

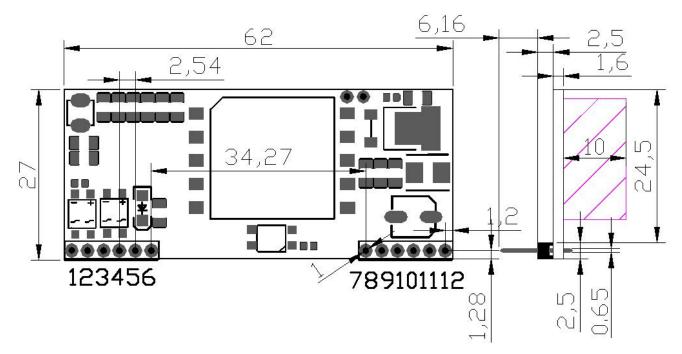
Power-Over-Ethernet Module

2.Scope of application

Video and VoIP Phone
RFID Reader
Multiband Access Point
Surveillance camera

1.Product characteristics

- •Compliance with IEEE802.3at standard.
- •38V~57V wide operating voltage range.
- Maximum output power up to 30W; Rated output: 12V/2.5A.
- •The output ripple is less than 150 mV.
- Conversion efficiency can be as high as 87% (input: 48 output)12V@2.5A).
- Withovercurrent, short circuit, under voltage, surge andother excellent reliability and circuit protection.
- PCBA standard size: 62mm*27mm*14mm
- •Input/Output: isolate 1500Vdc.
- High reliability: The design meets the 5 million hour average failure interval.


3.describe

- The module is designed to extract power from conventional Class 5 Ethernet cable twisted pairs and meets the IEEE 802.3at Power-Ethernet (PoE) standard.At the same time, the module allows the power supply category to select "Intermediate Overlap" and "End Overlap" power supply without distinguishing polarity.
- Based on the IEEE 802.3at standard, this paper establishes information connection about the connection status, device type, power consumption level of the receiving device PD, and then applies 30W power supply to port compatible devices based on PSE to power the PD through ethernet.
- This module DC/DC converter works in a wide input voltage range and low ripple low noise output. The DC/DC converter also has built-in output overload, output short circuit and overtemperature protection, and provides a 1500Vdc (input/output) electrical isolation.

Data Sheet

4. Mechanical dimensions

Company (mm)

All the above dimensional errors: (\pm 0.3)

5. pin definition

Pin	Name	describe
1	VA1	This input pin is connected to the VA 2 and the central tap connected to the transformer, pins 1 and 2 of the RJ45 connector (RX).(There are two sets of bridge stacks added to the POE input to accommodate different PSE power supply directions)
2	VA2	This input pin is used with VA1 and central taps connected to transformers, pins 3 and 6 connected to RJ45 connectors (TX).(There are two sets of bridge stacks added to the POE input to accommodate different PSE power supply directions)
3	VB1	This input pin works with VB2 and connects to pins 4 and 5 of the RJ45 connector (POE input plus two sets of bridge stacks to accommodate different PSE end power supply directions)
4	VB2	This input pin works with VB1 and connects to pins 7 and 8 of the RJ45 connector (POE input plus two sets of bridge stacks to accommodate different PSE end power supply directions)
7	GND	Negative DC output.This pin provides negative adjustment output
8	GND	Negative DC output. This pin provides negative adjustment output
9	Vout	The DC output of the positive pole. This pin provides positive adjustment output
10	Vout	The DC output of the positive pole. This pin provides positive adjustment output
5,6 11,12	NC	Hanging

6. Electrical characteristics

6.1 Absolute maximum rating parameter

No	parameter	Symbol	MIN	МАХ	Units
1	DC Voltage	Vcc	38	57	V
2	DC Voltage Surge 1ms	VSURGE	-0.6	80	V
3	ambient temperature	Ts	-40	80	°C

*Exceeding the above rating may cause permanent damage to the product.Functional operations under these conditions are not recommended.

6.2 Recommended working conditions

No	parameter	Symbol	MIN	ТҮР	МАХ	Units
1	input voltage	VIN	38	48	57	V
2	Low Voltage Lock	Vlock	35	-	-	V
3	working temperature	Тор	-40	25	80	°C

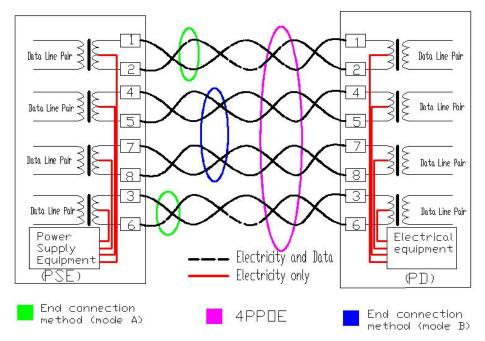
*Applicable only to WC-PD30B120A maximum operating temperature.

6.3 DC Characteristic

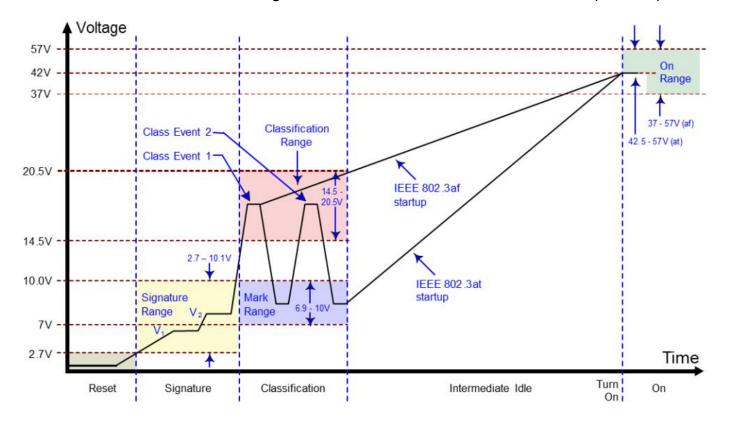
No	parameter	Symbol	MIN	ТҮР	МАХ	Units	Test Opinions
1	Standard Output Voltage	VDC	11.5	12.0	12.2	V	VIN=48v
2	Output Current (VIN=48V)	Pwr	-	2.5	2.8	А	Wide voltage input 38-57V
3	Power adjustment rate	VLINE	-	0.1	-	%	@50% Load
4	Load Adjustment Rate	VLOAD	-	1	-	%	@V _{IN} =48V
5	Ripple Output Noise	VRN	-	150	200	mVp-p	@Maximum Load
6	Minimum Load	RLOAD	10	-	-	mA	
7	Short circuit duration	Tsc	-	-	œ	sec	
8	Efficiency (load 80%)	EFF	85	88	-	%	
9	Isolation Voltage (I/O)	VIso	-	-	1500	VPK	
10	temperature coefficient	Тс	-	0.02		%	Per °C
11	efficiency	Tr	-	150	250	ms	输入=48V 输出 =max

1: Typical number is 25 C, nominal voltage is 48V, for auxiliary design only.

2: Output ripple and noise can be reduced by an external filter, see the application instructions.


3: If operated under the specified minimum load, the module emits audible noise and may cause PSE malfunction.

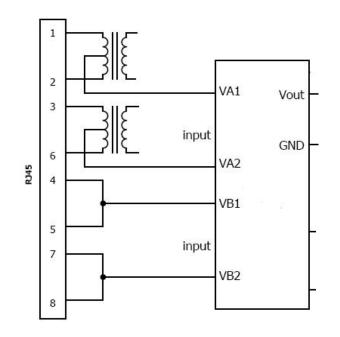
7. Functional Description


7.1 input

WC-PD30B120A input end with bridge stack ensures input polarity protection, user can choose the connection mode as needed.

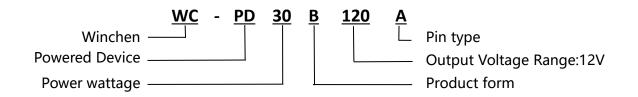
7.2PD Signature

When the module is connected to the cable, it will automatically provide the Power Device (PD) signature to the PSE when needed. The PSE recognizes that the PD is connected to that line and provides power

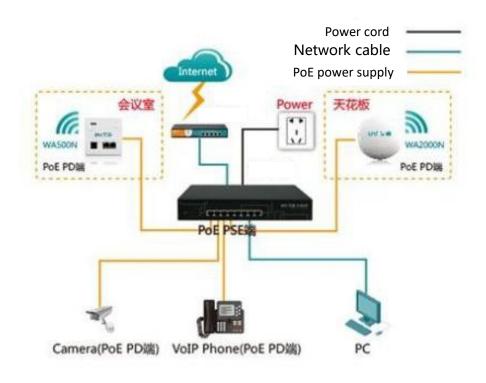


7.3 Power Classification

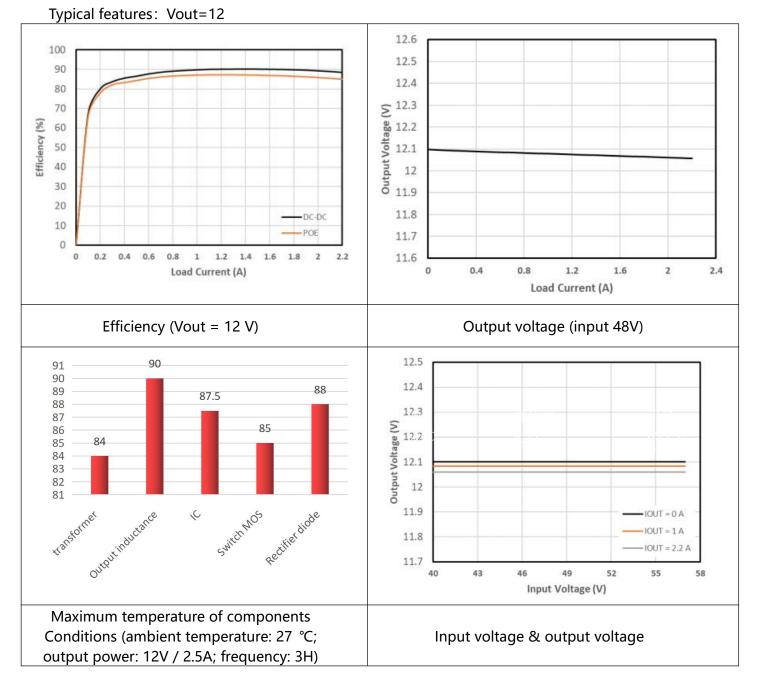
WC-PD30B120A uses IEEE802.3at standard and runs with Class 4 (30W) power rating by default.


Define criteria	Cable requirements	Grading parameters	Power Supply Characteristics
			The DC voltage ranges from 42 to 57V, with a typical value of 48V.
IEEE802.3at (PoE Plus)	CAT5 cable or CAT6 cable	Maximum power required for Class4 devices is 13W~25.5W	Typical operating current is 10~600mA; typical output power: 30W;
			Class4 rating supported by electrical equipment
	CAT5 cable	Maximum power required for Class0 devices is 0~12.95W	The DC voltage ranges from 38 to 57V, with a typical value of 48V.
IEEE802.3af		The maximum power required for Class1 devices is 0~3.84W	Typical operating current is 10~350mA; typical output power: 15.4W;
(PoE)		The maximum power required for Class2 devices is 3.85W~6.49W	The overload detection current is 350~500mA.
		The maximum power required for Class3 devices is 6.5W~12.95W	Provide 4 Class Power Requests for PD Devices ranging from 3.84 to 12.95W

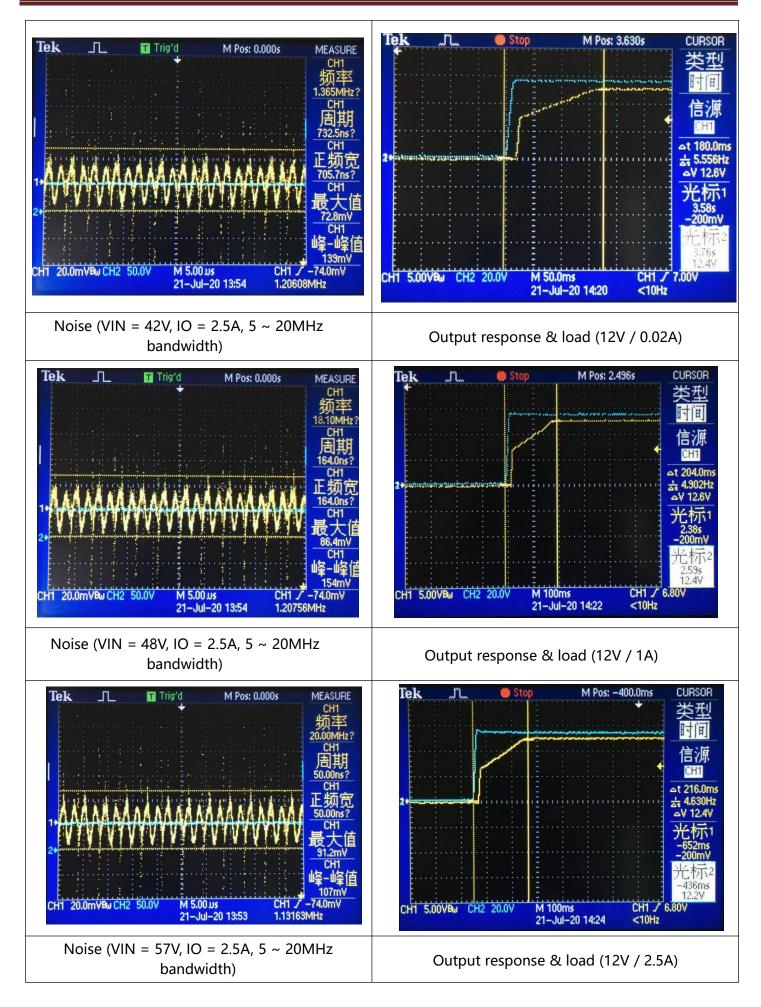
7.5 Typical schematic diagram



8. POE Product naming rules



9. Typical applications


This module is used in PSE network cable to convert electric energy to DC-DC to the required voltage of equipment without affecting data signal transmission. It conforms to ieee802.3at standard and is used by all equipment terminals

10. Test waveform diagram

