Dual Channel Photologic® Encoder Detector

OPL583

Features:

- Two matched detectors with photolithographic control of relative position
- Dual Photologic[®] circuitry in single package provides reduced component count
- Open collector inverter output for flexibility of circuit interface
- Low cost plastic housing

V_{cc} (V)

Min / Max

4.5/16

Lead Length/

Spacing

0.50" / 0.05"

Description:

OPL583 contains a monolithic integrated circuit that incorporates two independent photodiodes, two linear amplifiers, two Schmitt trigger circuits and two output transistors which are all served by a common voltage regulator. The fixed position of the two photodiodes and the matched characteristics of the two channels allow considerable design flexibility. The outputs are TTL/LSTTL compatible and can drive up to 8 TTL loads over a voltage range from 4.5 to 16 V.

Photologic®

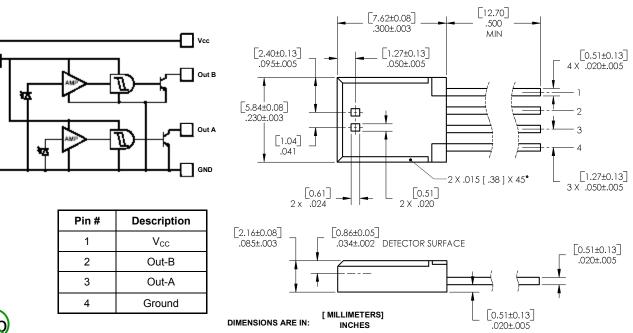
Dual Channel

Ordering Information

Input Power E_E

(mW/cm²) Min / Max

0.05 / 0.25


Applications include linear and rotary encoders with resolutions determined by external apertures

Part Number

OPL583

Applications:

- Rotary and Linear encoders
- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor

General Note

RoHS

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPTEK Technology, Inc. 1645 Wallace Drive, Carrollton, TX 75006lPh: +1 972 323 2200 www.optekinc.com I www.ttelectronics.com

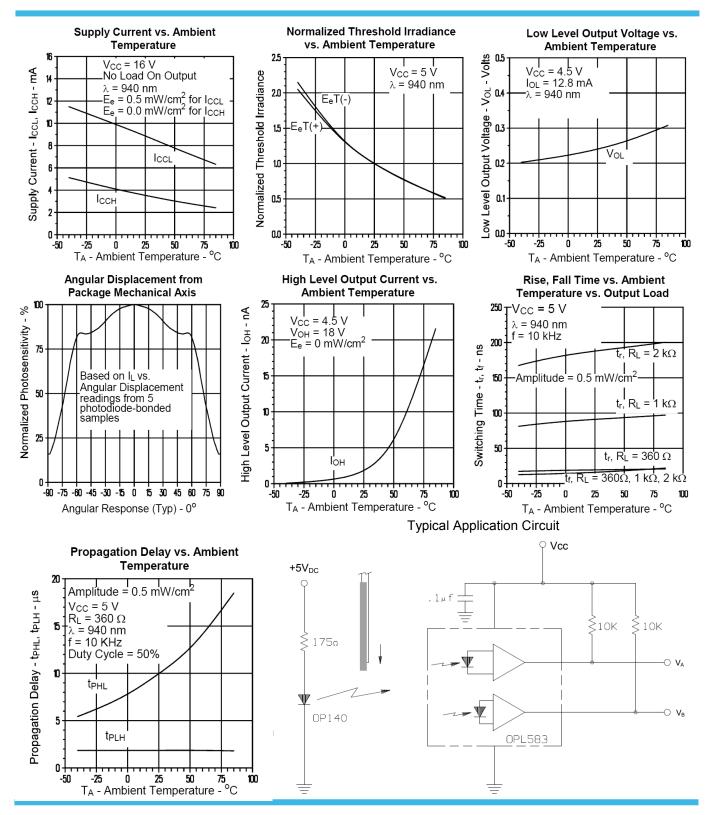
Dual Channel Photologic® Encoder Detector

OPL583

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)	
Operating Temperature Range	-40° C to +85° C
Storage Temperature Range	-40° C to +100° C
Lead Soldering Temperature [1/16 inch (1.6mm) from the case for 5 sec. with soldering iron]	260°C ⁽¹⁾
Output Photologic®	
Supply Voltage V _{CC}	18 V ⁽²⁾
Power Dissipation	200 mW ⁽³⁾
Duration of Output Short to V _{CC}	1 second
Voltage at Output	18 V
Low Level Output Current (sinking)	40 mA

SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	TEST CONDITIONS
V _{cc}	Operating Supply Voltage ⁽⁴⁾	4.5	-	16	V	-
E _{ET} ⁽⁺⁾	Positive-Going Threshold Irradiance ⁽⁵⁾	0.05	0.10	0.25	mW/ cm ²	-
$E_{ET}^{(+)}/E_{ET}^{(-)}$	Hysteresis Ratio	1.1	1.5	2	-	-
MATCH	Channel Match $E_{ET}^{(+A)} / E_{ET}^{(+B)}$	0.67	1	1.5	-	-
I _{CCL}	Supply Current Both Outputs Low (both photodiodes irradiated)	-	8.5	12	mA	E _E = 0.5 mW/cm ² (no load on out- put)
I _{ссн}	Supply Current Both Outputs High (both photodiodes shaded)	-	3.5	6	mA	$E_{E} = 0 \text{ mW/cm}^{2}$ (no load on output)
I _{CCM}	Supply Current Mixed Output States (one high, one low)	-	6	-	mA	$E_E = 0 \text{ mW/cm}^2 \text{ and } 0.5 \text{ mW/cm}^2$
I _{oh}	High Level Output Current	-	1	30	μA	$E_{E} = 0 \text{ mW/cm}^{2}$, $V_{OH} = 16 \text{ V}$
V _{OL}	Low Level Output Voltage	-	0.21	0.4	V	$E_{E} = 0.5 \text{ mW/cm}^{2}$, $I_{OL} = 12.8 \text{ mA}$
T _{phl} T _{plh}	Propagation Delay Output High to Low Output Low to HIgh	-	2 10	-	μs μs	$V_{CC} = 5 V, R_L = 360 \Omega$ $E_E = 0 \text{ or } 0.5 \text{ mW/cm}^2, f = 10 \text{ kHz},$ D.C. = 50%
t _r t _f	Output Rise Time Output Fall Time	-	20 15	-	ns ns	-

General Note


OPTEK Technology, Inc. 1645 Wallace Drive, Carrollton, TX 75006lPh: +1 972 323 2200 www.optekinc.com I www.ttelectronics.com

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Dual Channel Photologic® Encoder Detector

OPL583

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPTEK Technology, Inc. 1645 Wallace Drive, Carrollton, TX 75006IPh: +1 972 323 2200 www.optekinc.com I www.ttelectronics.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: OPL583