

2019 CATALOG Inductors

Guidelines and precautions regarding the technical information and use of our products described in this online catalog.

- If you want to use our products described in this online catalog for applications requiring special qualities or reliability, or for applications where the failure or malfunction of the products may directly jeopardize human life or potentially cause personal injury (e.g. aircraft and aerospace equipment, traffic and transportation equipment, combustion equipment, medical equipment, accident prevention, anti-crime equipment, and/or safety equipment), it is necessary to verify whether the specifications of our products fit to such applications. Please ensure that you will ask and check with our inquiry desk as to whether the specifications of our products fit to such applications use before you use our products.
- The quality and performance of our products as described in this online catalog only apply to our products when used in isolation. Therefore, please ensure you evaluate and verify our products under the specific circumstances in which our products are assembled in your own products and in which our products will actually be used.
- If you use our products in equipment that requires a high degree of reliability, regardless of the application, it is recommended that you set up protection circuits and redundancy circuits in order to ensure safety of your equipment.
- The products and product specifications described in this online catalog are subject to change for improvement without prior notice. Therefore, please be sure to request and confirm the latest product specifications which explain the specifications of our products in detail, before you finalize the design of your applications, purchase, or use our products.
- The technical information in this online catalog provides examples of our products' typical operations and application circuits. We do not guarantee the non-infringement of third party's intellectual property rights and we do not grant any license, right, or interest in our intellectual property.
- If any of our products, product specifications and/or technical information in this online catalog is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially with regard to security and export control, shall be observed.

< Regarding the Certificate of Compliance with the EU RoHS Directive/REACH Regulations>

- The switchover date for compliance with the RoHS Directive/REACH Regulations varies depending on the part number or series of our products.
- When you use the inventory of our products for which it is unclear whether those products are compliant with the RoHS Directive/REACH Regulation, please select "Sales Inquiry" in the website inquiry form and contact us.

We do not take any responsibility for the use of our products outside the scope of the specifications, descriptions, guidelines and precautions described in this online catalog.

Inductors CONTENTS

Classification	Product Item	Type · Series	Part Number	Page		
		PCC- M0530M/M0540M M0630M/M0645M M0754M/M0750M/M0854M M0850M/M1054M/M1050M M1050ML/M1060ML (MC) (Automotive Grade)	ETQ P3MDDDYDD ETQ P4MDDDYDD ETQ P5MDDDYDD ETQ P6MDDDYDD	2		
		PCC- M1050MS(MC) (Automotive Grade)	ETQ P5M□□□YSC	16		
		PCC- M1280MF (MC) (Automotive Grade)	ETQ P8M□□□JFA	19		
		PCC- M0530M-LP/M0630M-LP M0840M-LP/M1040M-LP (MC) (Automotive Grade)	ETQ P3M□□□KV□ ETQ P4M□□□KV□	24		
		PCC- M0648M-LE M0748M-LE (MC) (Automotive Grade)	ETQ P4M□□□KFN ETQ P4M□□□KFM	36		
Power Inductors	Power Choke Coils	PCC- M0530M-H/M0630M-H (MC) (Automotive Grade)	ETQ P3M□□□HF□	41		
(SMD)		PCC-D1413H (DUST) (Automotive Grade)	ETQ PDH240DTV	45		
		Soldering Conditions (PCC for automotive use)				
		Safety Precautions (PCC for automotive use)		49		
		PCC-M0730L (MC) for consumer use	ETQ P3L	51		
		PCC-M0740L (MC) Low DCR Type for consumer use	ETQ P4L	53		
		PCC-M1040L (MC) for consumer use	ETQ P4L	55		
		PCC-M1040L (MC) Low DCR Type for consumer use	ETQ P4L	57		
		PCC-M1250L (MC) for consumer use	ETQ P5L	59		
		Packaging Methods · Soldering Conditions (PCC for co	onsumer use)	61		
		Safety Precautions (PCC for consumer use)		63		
	Voltage Step-up Coils	Chip	ELT 3KN	64		

All products in this catalog comply with the RoHS Directive.

The RoHS Directive is "the Directive (2011/65/EU) on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment" and its revisions.

Power Choke Coil (Automotive Grade)

Series: PCC-M0530M (MC) PCC-M0540M (MC)

PCC-M0630M (MC) PCC-M0645M (MC) PCC-M0754M (MC) PCC-M0750M (MC)

PCC-M0854M (MC) PCC-M0850M (MC) PCC-M1054M (MC) PCC-M1050M (MC)

PCC-M1050ML (MC) PCC-M1060ML (MC)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property: patents 21 (Registered 2/Pending 19)

Features

- High heat resistance : Operation up to 150 °C including self-heating
- High-reliability : High vibration resistance as result of newly developed integral construction; under severe reliability conditions of automotive and other

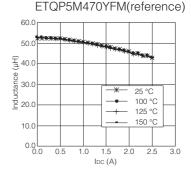
strenuous applications

• High bias current : Excellent inductance stability using ferrous alloy

magnetic material (Fig.1)

• Temp. stability : Excellent inductance stability over broad temp. range (Fig.1)

• Low audible (buzz) noise: New metal composite core technology


High efficiency : Low Rpc of winding and low eddy-current loss of the core

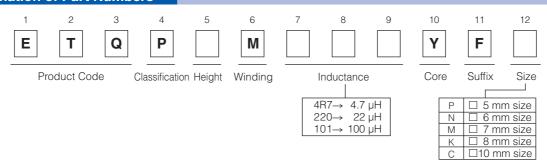
Shielded construction

AEC-Q200 Automotive qualified

RoHS compliant

• Fig.1 Inductance v.s. DC current, Temp.

Recommended Applications


- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

 1,000 pcs/box (2 reel): PCC-M0645M, M0754M, M0750M, M0854M, M0850M, M1054M, M1050M, M1050ML, M1060ML

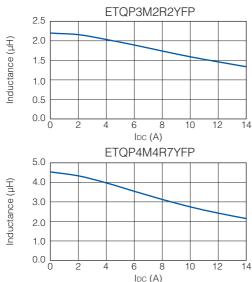
• 2,000 pcs/box (2 reel) : PCC-M0530M, M0540M, M0630M

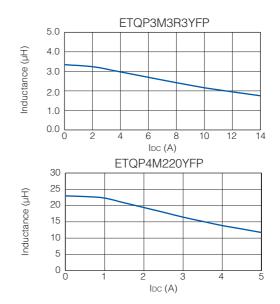
Explanation of Part Numbers

Temperature rating

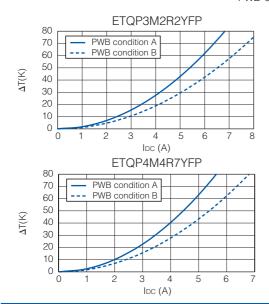
Operatin	g temperature range	Tc:-40 °C to +150 °C(Including self-temperature rise)			
Storage condition	After PWB mounting	10: -40 °C to +150 °C(including self-temperature rise)			
Storage condition	Before PWB mounting	Ta : -5 °C to +35 °C 85%RH max.			

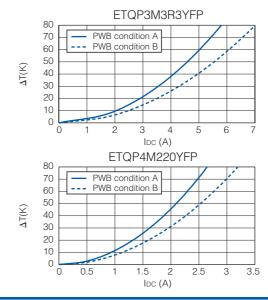
1. Series PCC-M0530M/PCC-M0540M (ETQP3M PF/ETQP4M PF)


Standard Part	ts							
	Inductance *1		DCR (at 20 °C) (mΩ)		Rated Current (Typ. : A)			
Part No.	LO	Tolerance	Тур.	Tolerance	△T=	:40K	△L=-30%	Series
	(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
ETQP3M2R2YFP	2.2		22.6 (24.8)		4.8	5.8	10.9	PCC-M0530M [5.5×5.0×3.0(mm)]
ETQP3M3R3YFP	3.3	±20	31.3 (34.4)	±10	4.1	5.0	8.6	
ETQP4M4R7YFP	4.6	±20	36.0 (39.6)	±10	4.0	4.8	7.7	PCC-M0540M
ETQP4M220YFP	22		163.0 (179.0)		1.9	2.3	3.1	[5.5×5.0×4.0(mm)]

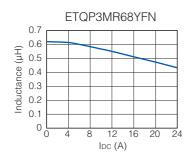

- (*1) Measured at 100 kHz.
- (*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 52 K/W measured on 5.5×5.0×3.0 mm case size and approx. 48 K/W measured on 5.5×5.0×4.0 mm case size. See also (★5)
- (*4) Saturation rated current : DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

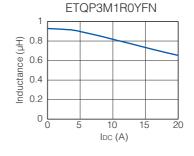
 In normal case, the max.standard operating temperature of +150 °C should not be exceeded.
 - For higher operating temperature conditions, please contact Panasonic representative in your area.

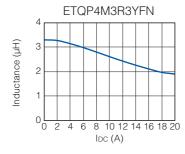

Performance Characteristics (Reference)

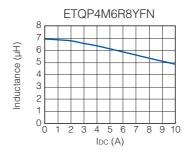

Inductance vs DC Current

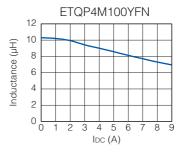
- Case Temperature vs DC Current
- PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

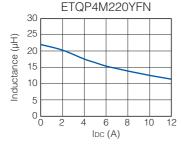

2. Series PCC-M0630M/PCC-M0645M (ETQP3M PTV) PTV/ETQP4M PVFN)

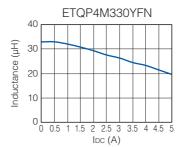

Standard Part	ts							
	Inductance *1		DCR (at 20 °C) (mΩ)		Rated Current (Typ. : A)			
Part No.	LO	Tolerance	Тур.	Tolerance	△T=	:40K	△L=-30%	Series
	(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
ETQP3MR68YFN	0.68		6.30 (6.90)		9.8	12.0	24.0	PCC-M0630M [6.5×6.0×3.0(mm)]
ETQP3M1R0YFN	1.0		7.90 (8.70)		8.8	10.7	20.0	
ETQP4M3R3YFN	3.3		16.10 (17.71)		6.4	8.2	13.3	
ETQP4M6R8YFN	6.8	±20	39.30 (43.20)	±10	4.1	5.2	10.0	
ETQP4M100YFN	10] =20	54.20 (59.60)	1 ±10	3.5	4.5	8.3	PCC-M0645M [6.5×6.0×4.5(mm)]
ETQP4M220YFN	22		126.00 (138.60)		2.3	2.9	6.0	
ETQP4M330YFN	33		172.00 (189.20)		2.0	2.5	4.1	
ETQP4M470YFN	47		210.00 (231.00)		1.8	2.2	3.8	

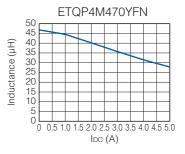

- (*1) Measured at 100 kHz.
- (*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40 K. Partsare soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 44 K/W measured on 6.5×6.0×3.0 mm case size and approx. 37 K/W measured on 6.5×6.0×4.5 mm case size. See also (*5)
- (*4) Saturation rated current: DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max standard operating temperature of +150 °C should not be exceeded.
 - For higher operating temperature conditions, please contact Panasonic representative in your area.

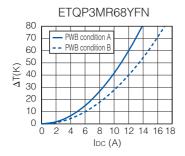

Performance Characteristics (Reference)

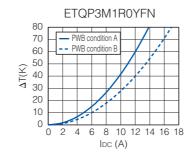

Inductance vs DC Current

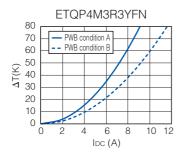


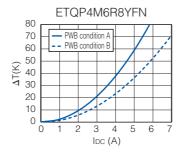


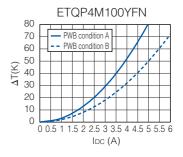


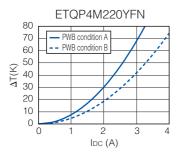


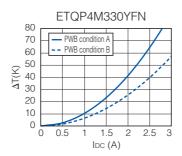


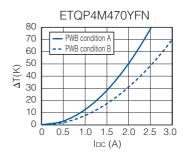

Jul. 2019


• Case Temperature vs DC Current


PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)







Jul. 2019

3. Series PCC-M0754M/PCC-M0750M (ETQP5M PTM/ETQP5M PTM/

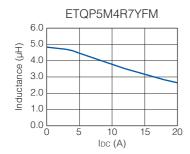
Standard Parts

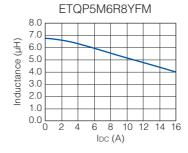
	Inducta	Inductance *1		DCR (at 20 °C) (mΩ)		d Current (Тур. : А)	
Part No.	LO	Tolerance	Тур.	Tolerance	△T=	-40K	△L=-30%	Series
	(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
ETQP5M4R7YFM	4.7		20.40 (22.50)		6.3	8.0	13.1	
ETQP5M6R8YFM	6.8		26.70 (29.40)		5.5	6.9	12.1	PCC-M0754M [7.5×7.0×5.4(mm)]
ETQP5M100YFM	10		37.60 (41.30)		4.7	5.7	10.6	
ETQP5M220YFM	22	±20	92.00 (102.00)		3.0	3.7	5.8	
ETQP5M330YFM	33		120.00 (132.00)		2.6	3.3	4.8	
ETQP5M470YFM	48		156.00 (172.00)] [2.3	2.9	4.1	
ETQP5M101YGM	95		348.00 (382.80)		1.4	1.9	3.1	PCC-M0750M [7.5×7.0×5.0(mm)]

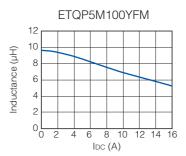
(*1) Measured at 100 kHz.

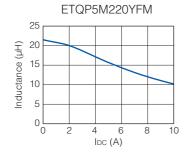
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

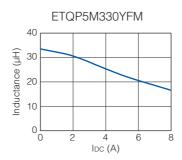
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high

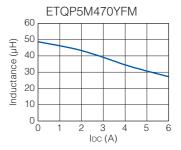

heat dissipation performance. Note: Heat radiation constant is approx. 31 K/W measured on 7.5×7.0×5.4 mm case size and approx. 29 K/W measured on 7.5×7.0×5.0 mm case size. See also (*5) (*4) Saturation rated current: DC current which causes L(0) drop –30 %.

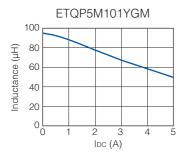

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded.

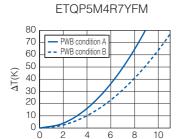

For higher operating temperature conditions, please contact Panasonic representative in your area.

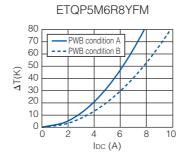

Performance Characteristics (Reference)

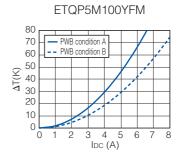

• Inductance vs DC Current

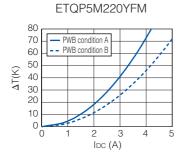


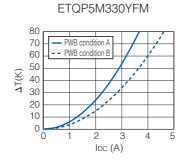


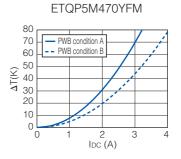


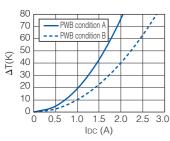

• Case Temperature vs DC Current


PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)

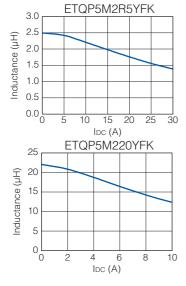

PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

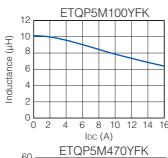


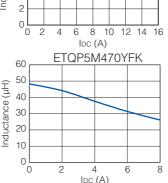

IDC (A)

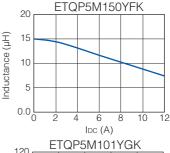


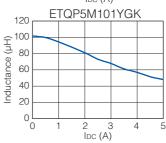
ETQP5M101YGM

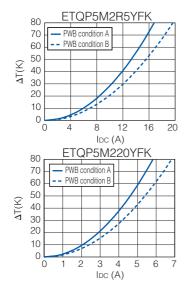

4. Series PCC-M0854M/PCC-M0850M (ETQP5MDDTFK/ETQP5MDDTGK)

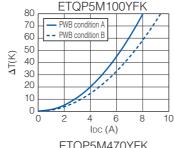

Standard Part	ts							
	Induct	ance *1	DCR (at 20 °C) (mΩ)		Rate	d Current (
Part No.	L0	Tolerance	Тур.	Tolerance	△T=	:40K	△L=-30%	Series
	(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
ETQP5M2R5YFK	2.5		7.60 (8.40)		11.9	14.0	20.1	
ETQP5M100YFK	10		33.40 (36.80)		5.7	6.7	13.0	PCC-M0854M
ETQP5M150YFK	15]	48.20 (53.10)		4.7	5.5	7.2	[8.5×8.0×5.4(mm)]
ETQP5M220YFK	22	±20	63.00 (70.00)	±10	4.1	4.8	6.9	[6.5×6.0×5.4(11111)]
ETQP5M470YFK	48]	125.00 (138.00)] [2.9	3.4	5.4	
ETQP5M101YGK	100		302.00 (333.00)		1.7	2.1	3.0	PCC-M0850M [8.5×8.0×5.0(mm)]


- (*1) Measured at 100 kHz.
- (*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 27 K/W measured on 8.5×8.0×5.4 mm case size and approx. 29 K/W measured on 8.5×8.0×5.0 mm case size. See also (*5) (*4) Saturation rated current: DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max.standard operating temperature of + 150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

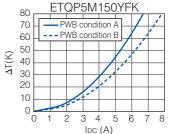

Performance Characteristics (Reference)

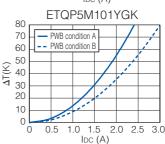

Inductance vs DC Current









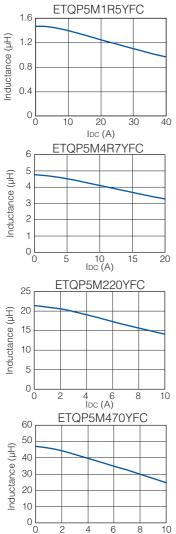

- Case Temperature vs DC Current
- PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

5. Series PCC-M1054M/PCC-M1050M (ETQP5M□□□YFC/ETQP5M□□□YGC)

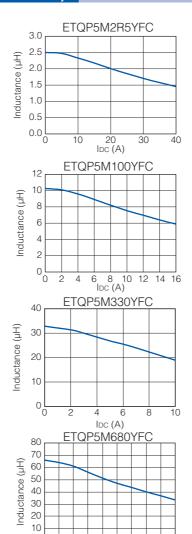
Standard Parts Rated Current (Typ.: A) Inductance *1 $^{\circ}$ C) (m Ω) △T=40K Part No. 10 Tolerance Tolerance $\triangle L=-30\%$ Series Тур. (μH) (*4)(max.) 1.45 17.9 ETQP5M1R5YFC 3.80 (4.20) 21.4 35.1 ETQP5M2R5YFC 2.5 5.30 (5.90 15.1 18.1 27.2 ETQP5M3R3YFC 3.3 7.10 (7.90 15.7 22.7 13.1 ETQP5M4R7YFC 4.7 10.20 (11.30 10.9 13.1 20.0 ETQP5M100YFC 23.80 (26.20) 8.5 10.7 10 PCC-M1054M ETQP5M150YFC 35.60 (39.16) 7.0 15 5.8 12.0 $[10.7 \times 10.0 \times 5.4(mm)]$ ±20 ±10 ETQP5M220YFC 22 45.00 (50.00) 5.2 6.2 8.8 32.5 68.50 (75.40) 7.6 ETQP5M330YFC 4 2 5.0 ETQP5M470YFC 47 99.00 (108.90 3.5 4.2 6.8 ETQP5M680YFC 136.00 (149.60) 3.0 3.6 49 66 PCC-M1050M ETQP5M101YGC 208.00 (229.00) 2.2 2.7 3.0 97 $[10.7 \times 10.0 \times 5.0 \text{(mm)}]$

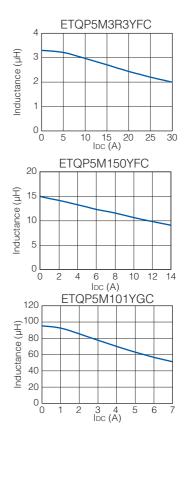
(*1) Measured at 100 kHz.
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4)

and measured at room temperature. See also (*5)


(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 23 K/W measured on 10.7×10.0×5.4 mm case size and approx. 26 K/W measured on 10.7×10.0×5.0 mm case size. See also (*5)

(*4) Saturation rated current: Dc current which causes £(0) drop -30 %.
 (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 In normal case, the max.standard operating temperature of +150 °C should not be exceeded.


 For higher operating temperature conditions, please contact Panasonic representative in your area.

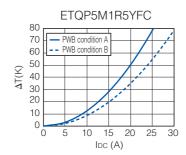

Performance Characteristics (Reference)

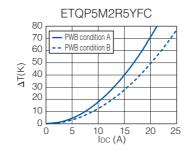
Inductance vs DC Current

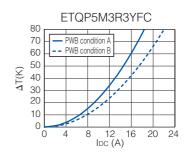
IDC (A)

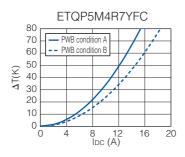
2 3

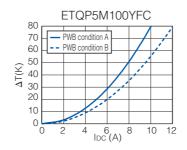
0

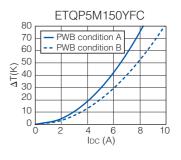

4 5 6

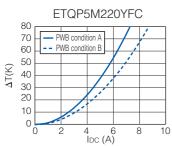

IDC (A)

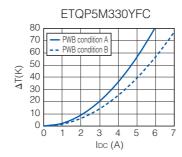

8

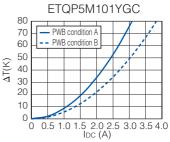

Case Temperature vs DC Current

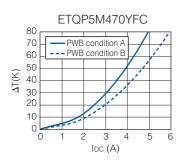

PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

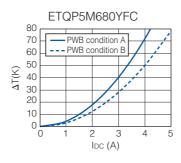




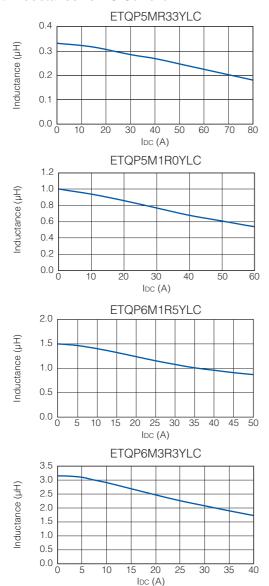


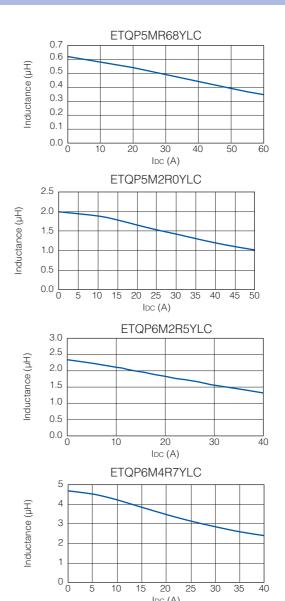






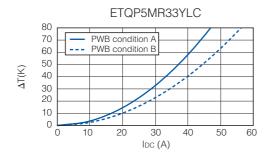
6. Series PCC-M1050ML/PCC-M1060ML (ETQP5M□□□YLC/ETQP6M□□□YLC)

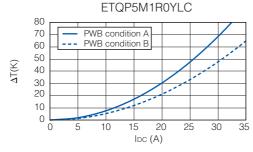

Standard Part	s							
	Inductance *1		DCR (at 20	$^{\circ}$ C) (m Ω)	Rate	d Current (
Part No.	LO	Tolerance	Тур.	Tolerance	△T=	40K	△L=-30%	Series
	(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
ETQP5MR33YLC	0.33		1.10 (1.21)		33.2	39.7	56.7	
ETQP5MR68YLC	0.68		1.75 (1.93)		26.3	31.5	40.0	PCC-M1050ML [10.9×10.0×5.0(mm)]
ETQP5M1R0YLC	1.0		2.30 (2.53)		23.0	27.5	37.8	
ETQP5M2R0YLC	2.0	±20	4.60 (5.06)	±10	16.2	19.4	31.3	
ETQP6M1R5YLC	1.5	±20	3.20 (3.52)] = 10 [19.5	23.3	32.0	
ETQP6M2R5YLC	2.5		4.55 (5.00)		16.3	19.6	25.8	PCC-M1060ML
ETQP6M3R3YLC	3.3		6.00 (6.60)		14.2	17.0	26.3	$[10.9 \times 10.0 \times 6.0 (mm)]$
ETQP6M4R7YLC	4.7		8.70 (9.57)		11.8	14.1	22.5	

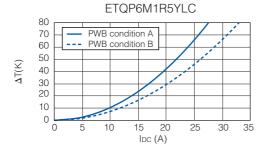

Measured at 100 kHz

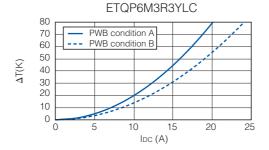
(*1) Measured at 100 kHz.
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 23 K/W measured on 10.9×10.0×6.0 mm case size. See also (*5)
(*4) Saturation rated current: Dc current which causes L(0) drop -30 %.
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

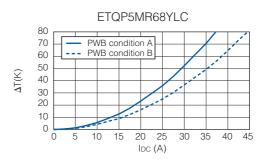
Performance Characteristics (Reference)

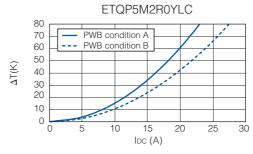

Inductance vs DC Current

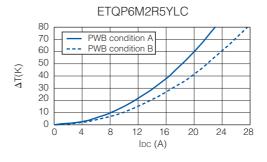




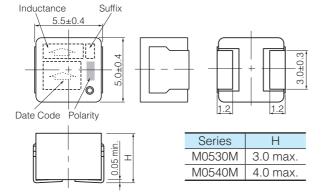

Case Temperature vs DC Current

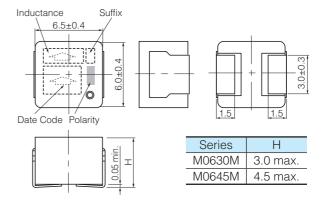

PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)



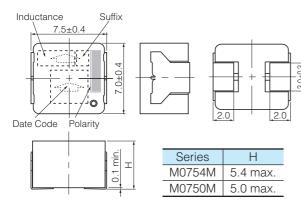


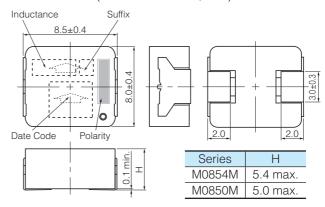


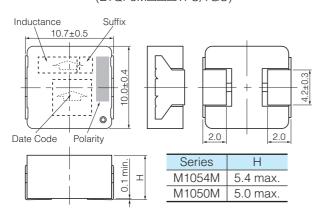


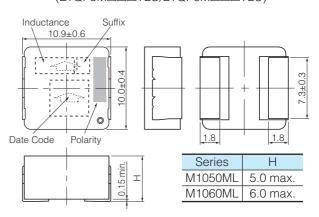

Dimensions in mm (not to scale)

Dimensional tolerance unless noted: ±0.5


Series PCC-M0530M Series PCC-M0540M (ETQP3MDDDYFP/ETQP4MDDDYFP)

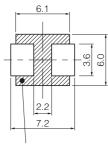

Series PCC-M0630M Series PCC-M0645M (ETQP3MDDDYFN/ETQP4MDDDYFN)


Series PCC-M0754M Series PCC-M0750M (ETQP5MDDDYFM/YGM)

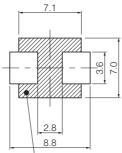

Series PCC-M0854M Series PCC-M0850M (ETQP5MDDDYFK/YGK)

Series PCC-M1054M Series PCC-M1050M (ETQP5MDDDTFC/YGC)

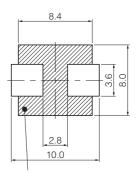
Series PCC-M1050ML Series PCC-M1060ML (ETQP5MDDDYLC/ETQP6MDDDYLC)


Recommended Land Pattern in mm (not to scale)

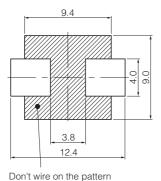
Dimensional tolerance unless noted: ±0.5


Series PCC-M0530M Series PCC-M0540M (ETQP3MDDDYFP/ETQP4MDDDYFP)

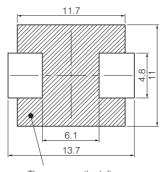
Series PCC-M0630M Series PCC-M0645M (ETQP3MDDDYFN/ETQP4MDDDYFN)


Series PCC-M0754M Series PCC-M0750M (ETQP5M□□□YFM/YGM)

Don't wire on the pattern on shaded portion the PWB.

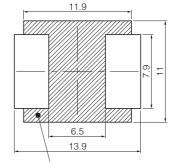


The same as the left


The same as the left.

Series PCC-M0854M Series PCC-M0850M (ETQP5M□□□YFK/YGK)

on shaded portion the PWB

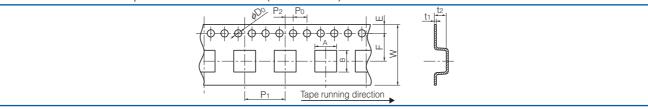

Series PCC-M1054M Series PCC-M1050M $(ETQP5M\Box\Box\BoxYFC/YGC)$

The same as the left.

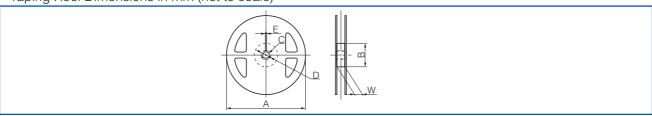
Series PCC-M1050ML Series PCC-M1060ML

 $(ETQP5M\Box\BoxYLC/ETQP6M\Box\BoxYLC)$

The same as the left.

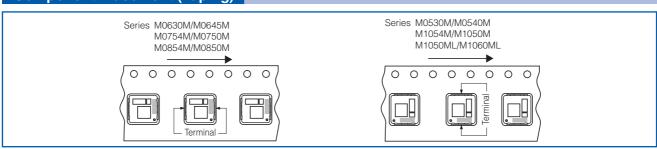

■ As for Soldering Conditions and Safety Precautions (Power Choke Coils (Automotive Grade)),

Please see Data Files


Packaging Methods (Taping)

• Embossed Carrier Tape Dimensions in mm (not to scale)

Series	А	В	W	Е	F	P ₁	P ₂	P ₀	φDo	t ₁	t ₂
PCC-M0530M	5.6	6.1									3.3
PCC-M0540M	5.0	0.1									4.3
PCC-M0630M	7.1	6.6	16.0		7 5	12.0				0.4	3.3
PCC-M0645M	7.1	0.0	7.6	1.75	7.5	12.0	2.0	4.0	1.5	0.4	5.0
PCC-M0754M/M0750M	8.1	7.6									6.0
PCC-M0854M/M0850M	9.1	8.6									0.0
PCC-M1054M/M1050M PCC-M1050ML/M1060ML	10.65	11.75	24.0		11.5	16.0				0.5	6.35


• Taping Reel Dimensions in mm (not to scale)

Standard Reel Dimensions

Series	А	В	С	D	Е	W
PCC-M0530M/M0540M PCC-M0630M/M0645M PCC-M0754M/M0750M PCC-M0854M/M0850M	330	100	13	21	2	17.5
PCC-M1054M/M1050M PCC-M1050ML/M1060ML						25.5

Component Placement (Taping)

Standard Packing Quantity/Reel

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel
PCC-M0530M	ETQP3M□□□YFP		
PCC-M0540M	ETQP4M□□□YFP	2,000 pcs / box (2 reel)	1,000 pcs
PCC-M0630M	ETQP3M□□□YFN		
PCC-M0645M	ETQP4M□□□YFN		
PCC-M0754M	ETQP5M□□□YFM		
PCC-M0750M	ETQP5M□□□YGM		
PCC-M0854M	ETQP5M□□□YFK		500 pcs
PCC-M0850M	ETQP5M□□□YGK	1,000 pcs / box (2 reel)	
PCC-M1054M	ETQP5M□□□YFC		
PCC-M1050M	ETQP5M□□□YGC		
PCC-M1050ML	ETQP5M□□□YLC		
PCC-M1060ML	ETQP6M□□□YLC		

- 15 -

Power Choke Coil (Automotive Grade)

Series: PCC-M0854MS (MC)
PCC-M1050MS (MC)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property: patents 18 (Registered 10/Pending 8)

Features

• The vibration-resistant structure achieves a vibration acceleration-resistance of 50 G or higher in 150 °C environments

Reduce core loss in high frequency band (More than 2 MHz)

• High heat resistance : Operation up to 150 °C including self-heating

SMD type

High-reliability: High vibration resistance as result of newly developed integral construction; under

severe reliability conditions of automotive and other strenuous applications

High bias current
 Excellent inductance stability using ferrous alloy magnetic material

Temp. stability : Excellent inductance stability over broad temp. range

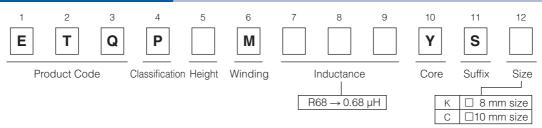
Low audible (buzz) noise: New metal composite core technology

High efficiency
 Low Roc of winding and low eddy-current loss of the core

Shielded construction

AEC-Q200 Automotive qualified

RoHS compliant


Recommended Applications

- ECU placed in the engine itself, mechanical-electrical-integrated ECU
- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 1,000 pcs/box (2 reel)

Explanation of Part Numbers

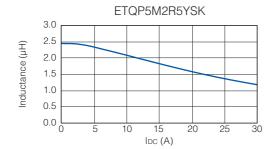
Temperature rating

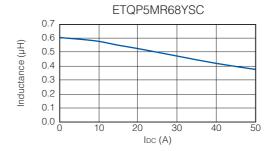
Operatin	g temperature range	Tc:-40 °C to +150 °C(Including self-temperature rise)
Storage condition	After PWB mounting	10 : -40 0 to +150 0(including sen-temperature rise)
	Before PWB mounting	Ta: -5 °C to +35 °C 85%RH max.

Standard Parts

	Inductance *1		DCR (at 20	DCR (at 20 °C) (mΩ)		d Current (
Part No.	LO	Tolerance	Тур.	Tolerance	△T=	40K	△L=-30%	Series
	(μH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
ETQP5M2R5YSK	2.45	±20	7.40 (8.14)	±10	12.0	14.1	21.7	PCC-M0854MS [8.5×8.0×5.4(mm)]
ETQP5MR68YSC	0.68	±20	1.66 (1.83)		27.0	32.3	40.0	PCC-M1050MS [10.9×10.0×5.0(mm)]

(*1) Measured at 100 kHz.

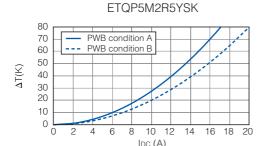

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4)

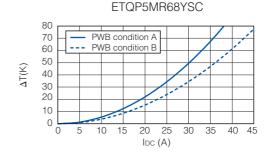

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FH4) and measured at room temperature. See also (*5)
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 30 K/W measured on 8.5×8.0×5.4 mm case size and approx. 20 K/W measured on 10.9×10.0×5.0 mm case size. See also (*5)
(*4) Saturation rated current: Dc current which causes L(0) drop -30 %.
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation application. This should be devided in a warst association made.

conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

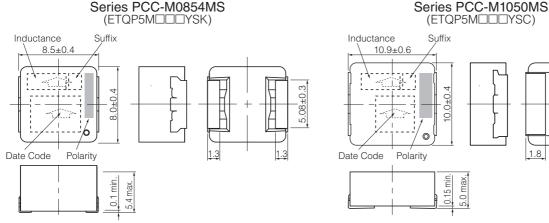
Inductance vs DC Current

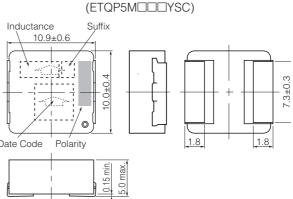




Case Temperature vs DC Current

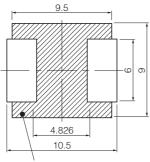
PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)


PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)



Dimensions in mm (not to scale)

Dimensional tolerance unless noted: ±0.5



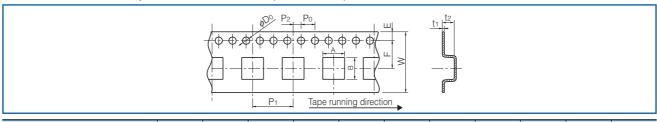
Recommended Land Pattern in mm (not to scale)

Dimensional tolerance unless noted: ±0.5

Series PCC-M0854MS (ETQP5MDDDYSK)

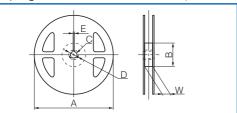
Don't wire on the pattern on shaded portion the PWB.

Series PCC-M1050MS (ETQP5MDDDYSC)


The same as the left.

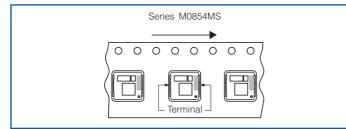
■ As for Soldering Conditions and Safety Precautions (Power Choke Coils (Automotive Grade)),

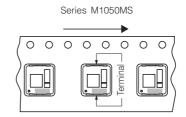
Please see Data Files


Packaging Methods (Taping)

Embossed Carrier Tape Dimensions in mm (not to scale)

Series	Α	В	W	Е	F	P ₁	P ₂	Po	ϕD_0	t ₁	t ₂
PCC-M0854MS	9.1	8.6	16.0	1 75	7.5	12.0	2.0	4.0	1.5	0.4	6.0
PCC-M1050MS	10.65	11.75	24.0	1.75	11.5	16.0	2.0	4.0	1.5	0.5	6.35


Taping Reel Dimensions in mm (not to scale)



Standard Reel Dimensions

Series	А	В	С	D	Е	W
PCC-M0854MS	330	100	12	01	2	17.5
PCC-M1050MS	330	100	13	21		25.5

Component Placement (Taping)

Standard Packing Quantity/Reel

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel
PCC-M0854MS	ETQP5M□□□YSK	1,000 pcs / box (2 reel)	500 pcs
PCC-M1050MS	ETQP5M□□□YSC	1,000 pcs / box (2 reel)	500 pcs

Power Choke Coil (Automotive Grade)

Series: PCC-M1280MF (MC)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property: patents 3 (Registered 1/Pending 2)

Features

 High heat resistance : Operation up to 160 °C including self-heating

Large current Power : 53 A (R33 type)

• High vibration resistance: 30G

SMD type

 High-reliability : High vibration resistance as result of newly

developed integral construction; under severe reliability conditions of automotive and other

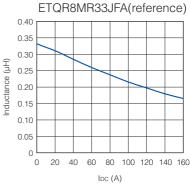
strenuous applications

: Excellent inductance stability using ferrous alloy High bias current

magnetic material (Fig.1)

Temp. stability : Excellent inductance stability over broad temp. range

Low audible (buzz) noise: New metal composite core technology


High efficiency : Low Rpc of winding and low eddy-current loss of the core

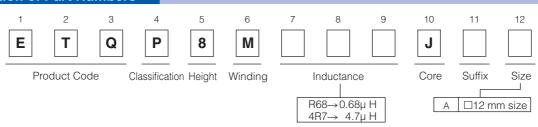
Shielded construction

AEC-Q200 Automotive qualified

RoHS compliant

• Fig.1 Inductance v.s. DC current

Recommended Applications


Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability

Boost-Converter, Buck-Converter DC/DC

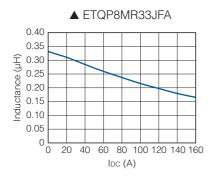
Standard Packing Quantity (Minimum Quantity/Packing Unit)

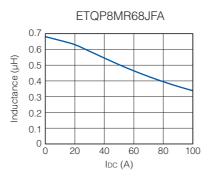
• 500 pcs./box (2 reel)

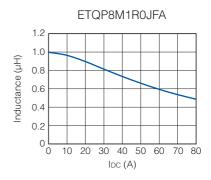
Explanation of Part Numbers

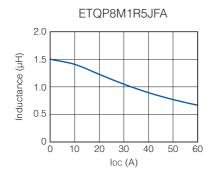
Temperature rating

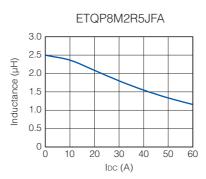
Operatin	g temperature range	Tc: -40 °C to +160 °C(Including self-temperature rise)
Storage condition	After PWB mounting	1040 C to +100 C(including self-temperature rise)
	Before PWB mounting	Ta: -5 °C to +35 °C 85%RH max.

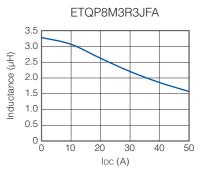

Standard Part	ts							
		Inductance *1		DCR (at 20 °C) (mΩ)		Rated Current (Typ. : A)		
Series	Part No.	L0	Tolerance	Typ. (max.)	Tolerance (%)	△T=40K		△L=-30%
		(µH)	(%)			(*2)	(*3)	(*4)
	▲ ETQP8MR33JFA	0.33		0.70 (0.77)		44.4	53.5	84.5
DOO 14400014E	ETQP8MR68JFA	0.68		1.10 (1.21)		35.4	42.6	56.9
PCC-M1280MF [12.6×13.2×8.0(mm)]	ETQP8M1R0JFA	1.0		1.36 (1.50)		31.8	38.3	44.4
[12.07 10.270.0(11111)]	ETQP8M1R5JFA	1.5	±20	1.80 (1.98)	±10	27.7	33.3	29.9
	ETQP8M2R5JFA	2.5		2.60 (2.86)		23.0	27.7	32.1
PCC-M1280MF	ETQP8M3R3JFA	3.3		3.60 (3.96)		19.6	23.6	27.6
[12.6×13.1×8.0(mm)]	ETQP8M4R7JFA	4.7		4.90 (5.39)		16.8	20.2	24.7

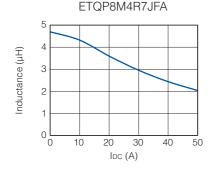

(*1) Measured at 100k Hz.


- ▲ Under development
- (*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 20 K/W measured. See also (*5)
- (*4) Saturation rated current : DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max.standard operating temperature of +160 °C should not be exceeded.
 - For higher operating temperature conditions, please contact Panasonic representative in your area.

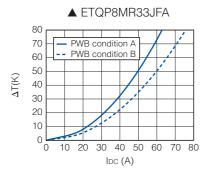

Performance Characteristics (Reference)

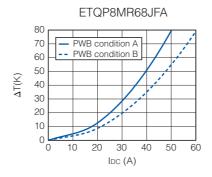

Inductance vs DC Current

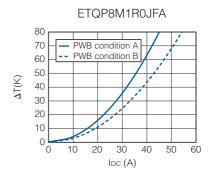


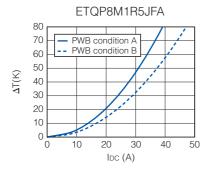


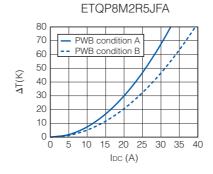
▲ Under development

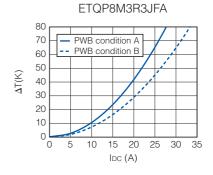


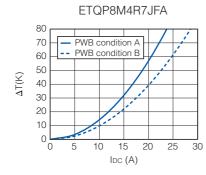

Performance Characteristics (Reference)

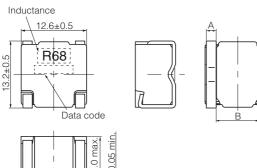

• Case Temperature vs DC Current


PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)

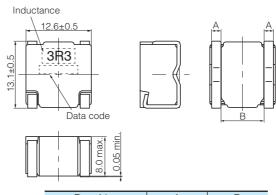

PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)







▲ Under development


Dimensions in mm (not to scale)

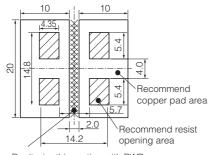
Dimensional tolerance unless noted: ±0.5

- ETQP8MR33JFA
- ETQP8MR68JFA
- ETQP8M1R0JFA
- ETQP8M1R5JFA
- ETQP8M2R5JFA
- ETQP8M3R3JFAETQP8M4R7JFA

Ļ			
	Part No.	Α	В
	ETQP8MR33JFA	2.25±0.2	7.3±1.0
	ETQP8MR68JFA	2.1±0.4	8.0±1.0
	ETOD8M1R0 IEA	2 1 + 0 /	8 0 - 1 0

Part No.	A	В
ETQP8M3R3JFA	1.5±0.4	8.8±1.05
ETQP8M4R7JFA	1.25±0.4	9.0±1.25

Recommended Land Pattern in mm (not to scale)

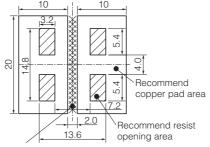

2.1±0.4

 1.8 ± 0.4

8.0±1.0 8.6±0.85

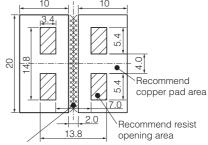
Dimensional tolerance unless noted: ±0.5

ETQP8MR33JFA



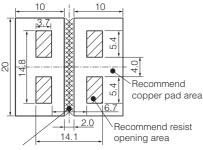
ETQP8M1R5JFA

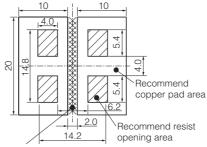
ETQP8M2R5JFA


Don't wire this portion with PWB.

ETQP8M4R7JFA

Don't wire this portion with PWB.


ETQP8M3R3JFA

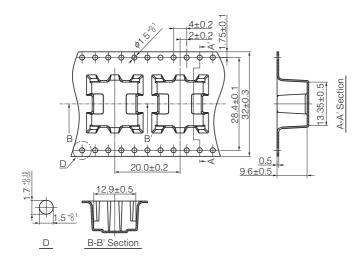

Don't wire this portion with PWB.

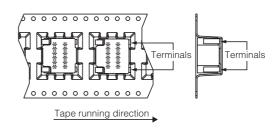
ETQP8M2R5JFA

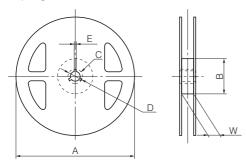
- ETQP8MR68JFA
- ETQP8M1R0JFA
- ETQP8M1R5JFA

Don't wire this portion with PWB.

Don't wire this portion with PWB.


■ As for Soldering Conditions and Safety Precautions (Power Choke Coils (Automotive Grade)),


Please see Data Files


Packaging Methods (Taping)

- Embossed Carrier Tape Dimensions in mm (not to scale)
- Component Placement (Taping)

• Taping Reel Dimensions in mm (not to scale)

Standard Reel Dimensions

Series	А	В	С	D	Е	W
PCC-M1280MF	330	(100)	13	21	2	33.5

Power Choke Coil (Automotive Grade)

Series: PCC-M0530M-LP(MC)

PCC-M0630M-LP(MC) PCC-M0840M-LP(MC) PCC-M1040M-LP(MC)

Fig.1 Inductance v.s. DC current

Inductance (µH)

3

2

ETQP4M4R7KVC(reference)

IDC (A)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property: patents 3 (Registered 2/Pending 1)

Features

• High heat resistance : Operation up to 155 °C including self-heating

■ Low profile : 3 mm max. height (PCC-M0530M-LP, PCC-M0630M-LP)

4 mm max. height (PCC-M0840M-LP, PCC-M1040M-LP)

SMD type

High-reliability : High vibration resistance as result of newly

developed integral construction; under severe reliability conditions of automotive and other

strenuous applications

• High bias current : Excellent inductance stability using ferrous alloy

magnetic material (Fig.1)

• Temp. stability : Excellent inductance stability over broad temp. range

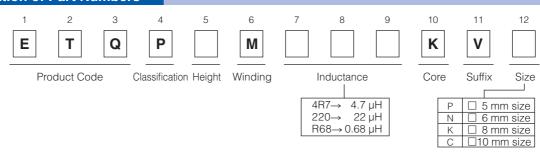
Low audible (buzz) noise: A gapless structure achieved with metal composite core

High efficiency : Low DC resistance of winding and low eddy-current loss of the core

Shielded construction

AEC-Q200 Automotive qualified

RoHS compliant


Recommended Applications

- Noise filter for various drive circuitry requiring high temp, operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

- 4,000 pcs/box (2 reel) : PCC-M0530M-LP, PCC-M0630M-LP
- 1,000 pcs/box (2 reel) : PCC-M0840M-LP, PCC-M1040M-LP

Explanation of Part Numbers

Temperature rating

Operatin	g temperature range	To : 55 °C to : 155 °C(Including colf temporature rice)
Storage condition ———	After PWB mounting	Tc: -55°C to +155°C(Including self-temperature rise)
	Before PWB mounting	Ta:-5 °C to +35 °C 85%RH max.

Standard Parts

1. Series PCC-M0530M-LP (ETQP3M□□□KVP)

1.00

0.68

0.33

Inductance *1 DCR (at 20 $^{\circ}C)$ (m Ω) Rated Current (Typ. △T=40K Part No. LO Tolerance Tolerance △L=-30% Series Тур. (μH) (max.) (%) (*2)(*3)(*4)(%) ETQP3M100KVP 10.00 96.00 (105.60) 2.4 2.9 4.2 ETQP3M6R8KVP 6.80 2.9 65.70 (72.27) 3.5 6.1 45.60 (50.16) 3.4 ETQP3M4R7KVP 4.70 4.1 6.7 5.4 ETQP3M3R3KVP 3.30 27.30 (30.03) 4.4 8.0 PCC-M0530M-LP 2.20 ETQP3M2R2KVP ±20 20.00 (22.00) ±10 5.2 6.3 10.1 $[5.5 \times 5.0 \times 3.0 (mm)]$ ETQP3M1R5KVP 1.50 12.00 (13.20) 12.0 6.7 8.1

(*1) Measured at 100k Hz.

ETQP3M1R0KVP

ETQP3MR68KVP

ETQP3MR33KVP

(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

7.5

8.4

10.6

9.0

10.2

12.7

14.1

15.9

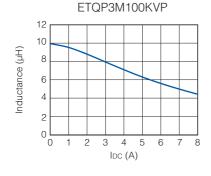
21.8

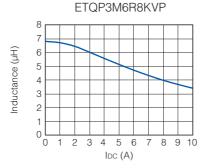
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 51 K/W measured on 5.5×5.0×3.0 mm case size. See also (*5)
- (*4) Saturation rated current: DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max standard operating temperature of $+155\ ^{\circ}\text{C}$ should not be exceeded.

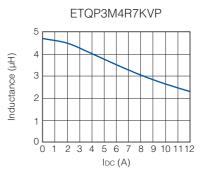
9.60 (10.56)

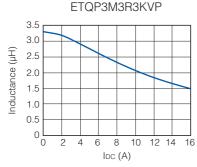
8.36)

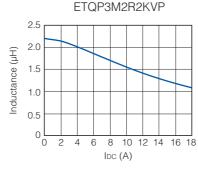
5.34)

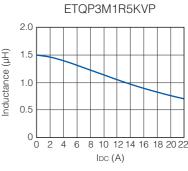

7.60 (

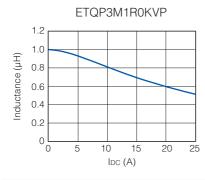

4.85 (

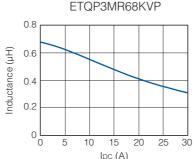

For higher operating temperature conditions, please contact Panasonic representative in your area.

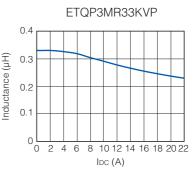

Performance Characteristics (Reference)

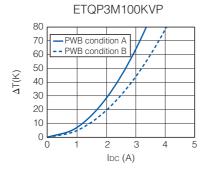

Inductance vs DC Current

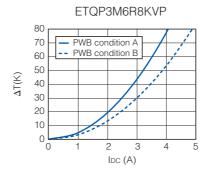


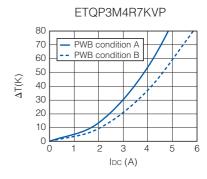


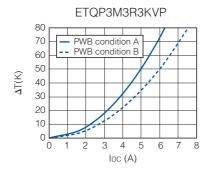


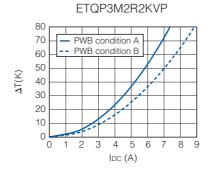


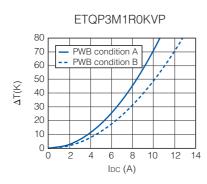


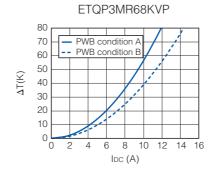

Performance Characteristics (Reference)

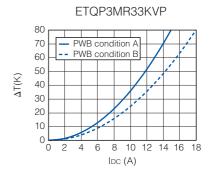

• Case Temperature vs DC Current


PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)


PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)







2. Series PCC-M0630M-LP (ETQP3M□□□KVN)

Standard Parts Inductance *1 DCR (at 20 °C) (mΩ) Rated Current (Typ. Part No. Tolerance Tolerance △T=40K △L=-30% Series 10 Тур. (max.) (μH) (%) (*2)(*4)(%)(*3) ETQP3M330KVN 33.00 206.00 (226.60) 1.7 2.1 3.0 ETQP3M220KVN 128.00 (140.80) 22.00 22 2.7 4.3 ETQP3M150KVN 15.00 99.20 (109.12) 2.5 3.0 5.1 ETQP3M100KVN 10.00 71.00 (78.10) 2.9 3.6 5.8 ETQP3M6R8KVN 6.80 45.60 (50.16) 3.6 4.5 8.1 PCC-M0630M-LP ETQP3M4R7KVN 4.70 29.00 (31.90) 4.6 5.6 9.8 ±20 ±10 $[6.4 \times 6.0 \times 3.0 (mm)]$ 24.10 (26.51) ETQP3M3R3KVN 3.30 5.0 6.1 11.5 2.20 7.9 ETQP3M2R2KVN 14.50 (15.95) 6.5 12.8 7.4 ETQP3M1R5KVN 1.50 11.00 (12.10) 9.1 14.2 ETQP3M1R0KVN 1.00 6.20 (6.82) 9.9 12.1 16.0

(*1) Measured at 100k Hz.

ETQP3MR68KVN

(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

10.8

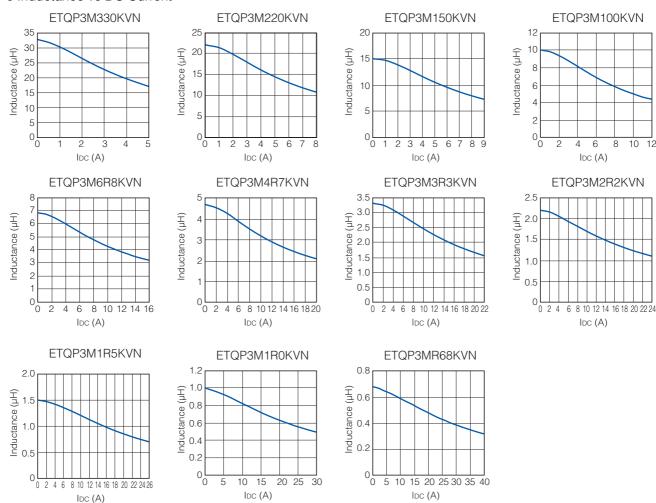
13.2

20.2

- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 44 K/W measured on 6.5×6.0×3.0 mm case size. See also (*5)
- (*4) Saturation rated current : DC current which causes L(0) drop -30 %.

5.20 (

5.72

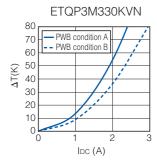

- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

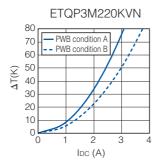
 In normal case, the max.standard operating temperature of +155 °C should not be exceeded.
 - For higher operating temperature conditions, please contact Panasonic representative in your area.

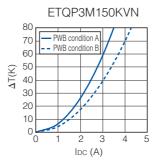
Performance Characteristics (Reference)

0.68

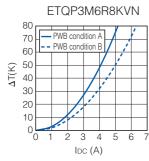
Inductance vs DC Current

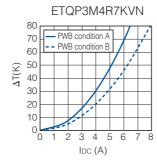


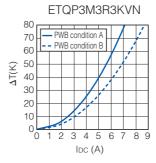

Performance Characteristics (Reference)

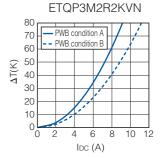

Case Temperature vs DC Current

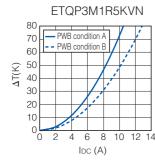
PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)

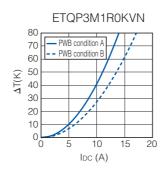

PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

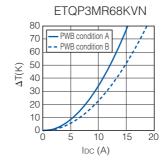


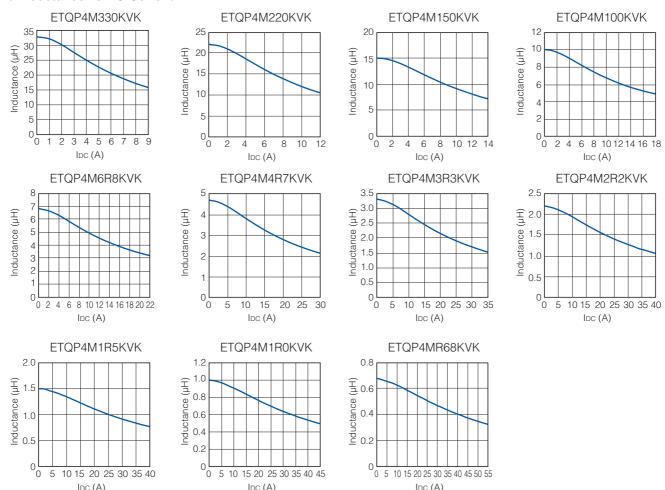










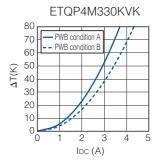

3. Series PCC-M0840M-LP (ETQP4M□□□KVK)

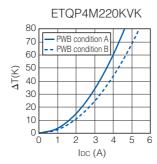
Standard Parts Inductance *1 DCR (at 20 $^{\circ}C)$ (m Ω) Rated Current (Typ. △T=40K Part No. Tolerance Tolerance △L=-30% Series 10 Тур. (μH) (max.) (%) (*2)(*4)(%) (*3)ETQP4M330KVK 33.00 118.00 (129.80) 2.6 3.1 4.7 ETQP4M220KVK 78.40 (86.24) 3.2 22.00 3.8 6.0 ETQP4M150KVK 15.00 55.00 (60.50) 3.8 4.5 7.6 ETQP4M100KVK 10.00 41.60 (45.76) 4.4 5.2 9.1 23.50 (25.85) 5.9 ETQP4M6R8KVK 6.80 6.9 11.0 PCC-M0840M-LP 16.10 (17.71) ETQP4M4R7KVK 4.70 ±20 ±10 7.1 8.3 15.1 $[8.5 \times 8.0 \times 4.0 (mm)]$ ETQP4M3R3KVK 3.30 14.10 (15.51) 7.6 8.9 17.4 ETQP4M2R2KVK 2.20 8.50 (9.35)9.8 11.4 20.4 ETQP4M1R5KVK 5.39) 12.8 22.5 1.50 4.90 15.1 ETQP4M1R0KVK 1.00 3.70 (4.07) 14.8 17.3 24.4 29.0 ETQP4MR68KVK 0.68 2.92 3.21) 16.6 19.5

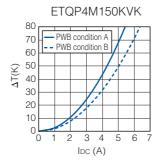
- (*1) Measured at 100k Hz.
- (*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 36 K/W measured on 8.5×8.0×4.0 mm case size. See also (*5)
- (*4) Saturation rated current: DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max standard operating temperature of +155 °C should not be exceeded.
 - For higher operating temperature conditions, please contact Panasonic representative in your area.

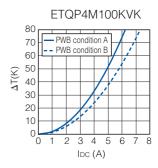
Performance Characteristics (Reference)

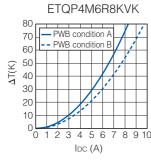
• Inductance vs DC Current

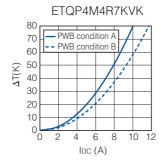


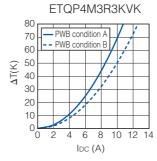

Performance Characteristics (Reference)

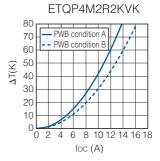

Case Temperature vs DC Current

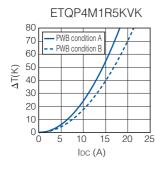

PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)

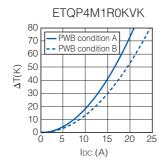

PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

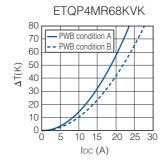






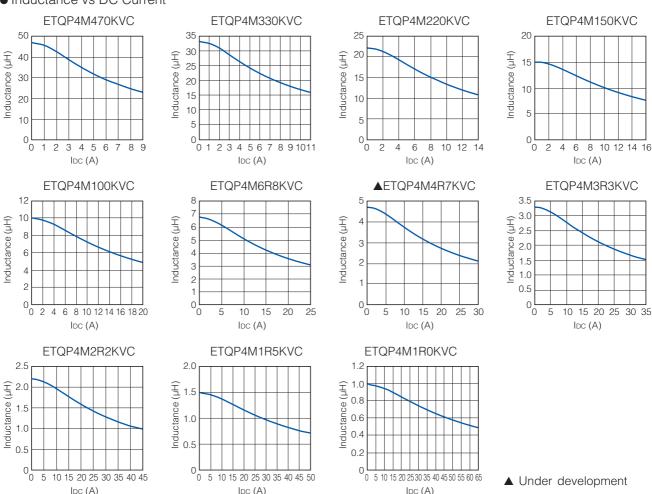






4. Series PCC-M1040M-LP (ETQP4M□□□KVC)

Standard Parts Inductance *1 DCR (at 20 Rated Current (Typ. $^{\circ}$ C) (m Ω) Part No. Tolerance Tolerance △T=40K △L=-30% Series 10 Тур. (μH) (max.) (%) (*2)(*4)(%)(*3) ETQP4M470KVC 47.00 132.00 (145.20) 2.8 3.4 4.7 ETQP4M330KVC 33.00 84.60 (93.06) 3.4 4.2 5.6 60.00 (66.00) ETQP4M220KVC 7.4 22.00 4.1 5.0 ETQP4M150KVC 15.00 37.00 (40.70) 5.2 9.2 6.3 ETQP4M100KVC 10.00 25.40 (27.94) 6.3 7.6 10.8 PCC-M1040M-LP ETQP4M6R8KVC 6.80 18.50 (20.35) 7.4 8.9 12.1 ±20 ±10 [10.7×10.0×4.0(mm)] **▲ETQP4M4R7KVC** 4.70 11.80 (12.98) 9.2 11.2 13.9 17.1 3.30 9.40 (10.34) 10.3 12.6 ETQP4M3R3KVC 12.1 7.48) 2.20 6.80 (14.8 21.0 ETQP4M2R2KVC ETQP4M1R5KVC 1.50 4.90 (5.39) 14.3 17.4 25.0 ETQP4M1R0KVC 1.00 2.60 (2.86 19.6 23.9 34.6

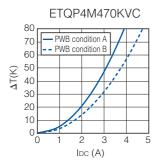

- (*1) Measured at 100k Hz.
- (*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 27 K/W measured on 10.7×10.0×4.0 mm case size. See also (*5)
- (*4) Saturation rated current : DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

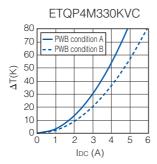
 In normal case, the max.standard operating temperature of +155 °C should not be exceeded.
- For higher operating temperature conditions, please contact Panasonic representative in your area.

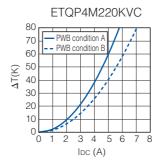
 Under development (Start of mass production: the 2nd half of 2019) Please contact us for customized part no.

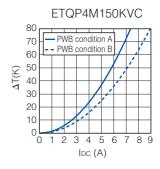
Performance Characteristics (Reference)

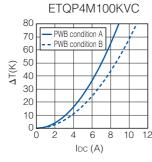
Inductance vs DC Current

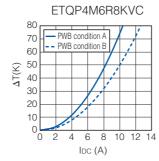


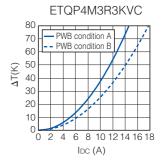

Performance Characteristics (Reference)

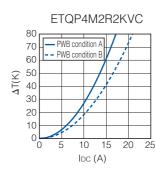

Case Temperature vs DC Current

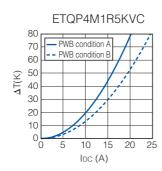

PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2)

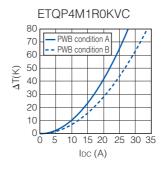

PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

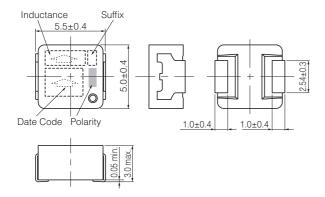




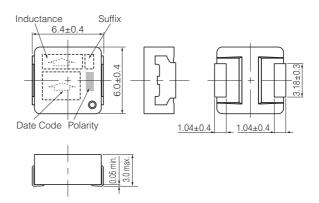




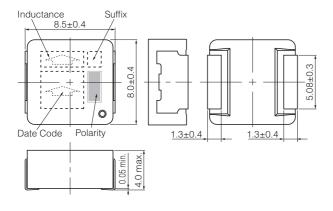




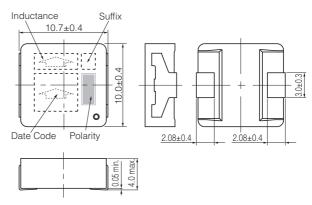
▲ Under development


Dimensions in mm (not to scale)

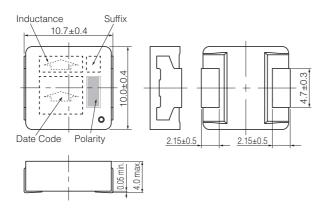
Dimensional tolerance unless noted: ±0.5


Series PCC-M0530M-LP (ETQP3M□□□KVP)

Series PCC-M0630M-LP (ETQP3M□□□KVN)



Series PCC-M0840M-LP (ETQP4M□□□KVK)


Series PCC-M1040M-LP

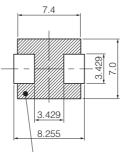
(ETQP4M□□□* KVC) * Exemption "1R0"

Series PCC-M1040M-LP

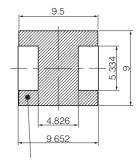
(ETQP4M1R0KVC)



Recommended Land Pattern in mm (not to scale)


Dimensional tolerance unless noted: ±0.5

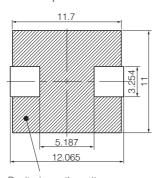
Series PCC-M0530M-LP (ETQP3M□□□KVP)


Don't wire on the pattern on shaded portion the PWB.

Series PCC-M0630M-LP (ETQP3M□□□KVN)

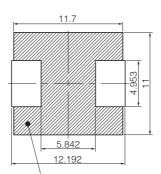
The same as the left.

Series PCC-M0840M-LP (ETQP4MUUUKVK)



The same as the left.

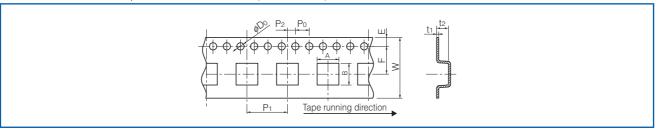
Series PCC-M1040M-LP


(ETQP4M□□□*KVC)

★ Exemption "1R0"

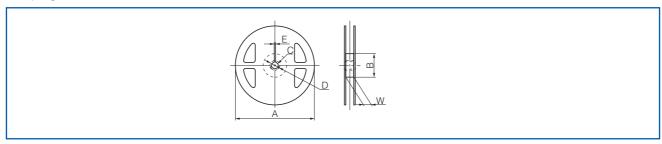
Don't wire on the pattern on shaded portion the PWB

Series PCC-M1040M-LP (ETQP4M1R0KVC)

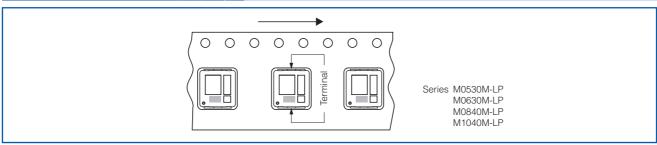

The same as the left.

■ As for Soldering Conditions and Safety Precautions (Power Choke Coils (Automotive Grade)),

Please see Data Files


Packaging Methods (Taping)

• Embossed Carrier Tape Dimensions in mm (not to scale)


Series	А	В	W	Е	F	P ₁	P ₂	P ₀	ϕD_0	t ₁	t ₂
PCC-M0530M-LP	5.6	6.1	16	1.75	7.5	8	2	4	1.5	0.3	3.3
PCC-M0630M-LP	6.5	7.1	16	1.75	7.5	8	2	4	1.5	0.3	3.3
PCC-M0840M-LP	8.63	9.1	16	1.75	7.5	12	2	4	1.5	0.4	6.0
PCC-M1040M-LP	10.65	11.75	24	1.75	11.5	16	2	4	1.5	0.5	6.35

• Taping Reel Dimensions in mm (not to scale)

Series	А	В	С	D	Е	W
PCC-M0530M-LP PCC-M0630M-LP PCC-M0840M-LP	330	(100)	13	21	2	17.5
PCC-M1040M-LP						25.5

Component Placement (Taping)

Standard Packing Quantity/Reel

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel
PCC-M0530M-LP	ETQP3M□□□KVP	4,000 pcs / box (2 reel)	2,000 pcs
PCC-M0630M-LP	ETQP3M□□□KVN	4,000 pcs / box (2 reel)	2,000 pcs
PCC-M0840M-LP	ETQP4M□□□KVK	1,000 pcs / box (2 reel)	500 pcs
PCC-M1040M-LP	ETQP4M□□□KVC	1,000 pcs / box (2 reel)	500 pcs

Power Choke Coil (Automotive Grade)

Series: PCC-M0648M-LE(MC)
PCC-M0748M-LE(MC)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property: patents 3 (Registered 2/Pending 1)

Features

Low loss (Low DC resistance)

High heat resistance : Operation up to 150 °C including self-heating

SMD type

High-reliability
 High vibration resistance as result of newly developed integral construction;

under severe reliability conditions of automotive and other strenuous applications

High bias current
 Excellent inductance stability using ferrous alloy magnetic material

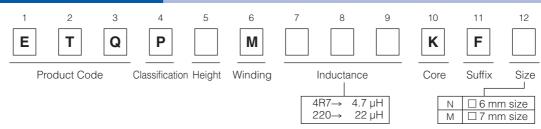
Temp. stability : Excellent inductance stability over broad temp. range
 Low audible (buzz) noise : A gapless structure achieved with metal composite core

High efficiency
 Low DC resistance of winding and low eddy-current loss of the core

Shielded construction

AEC-Q200 Automotive qualified

RoHS compliant


Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 1,000 pcs./box (2 reel)

Explanation of Part Numbers

Temperature rating

Operatin	g temperature range	Tc: -40 °C to +150 °C(Including self-temperature rise)
Storage condition After PWB mounting	ic : -40 C to +130 C(including self-temperature rise)	
Storage Condition	Before PWB mounting	Ta: -5 °C to +35 °C 85%RH max.

4.2

6.7

1. Series PCC-M0648M-LE (ETQP4M□□□KFN)

		Inductance *1		DCR (at 20	$^{\circ}$ C) (m Ω)	Rated Current (Typ. : A)		
Series	Part No.	LO	Tolerance	Тур.	Tolerance	△T=40K		△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP4M3R3KFN	3.30		13.10 (14.41)		7.2	9.2	12.0
PCC-M0648M-LE	ETQP4M4R7KFN	4.70	±20	20.70 (22.77)	±10	5.7	7.3	9.3
[6.4×6.0×4.8(mm)]	ETQP4M100KFN	10.00] ±20	40.40 (44.44)	±10	4.1	5.2	8.1

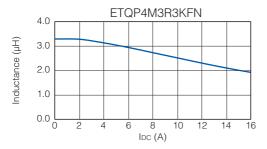
(*1) Measured at 100k Hz.

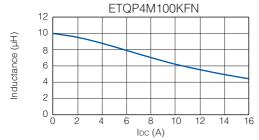
Standard Parts

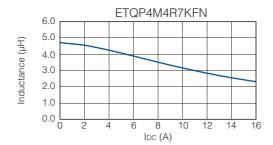
(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

63.80 (70.18)

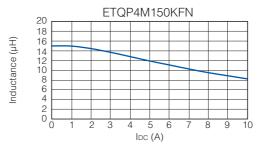
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 30 K/W measured on 6.4×6.0×4.8 mm case size. See also (*5) (*4) Saturation rated current: DC current which causes L(0) drop -30 %.

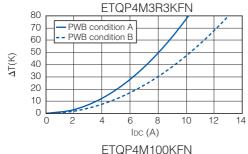

15.00

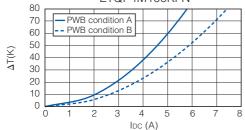

- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

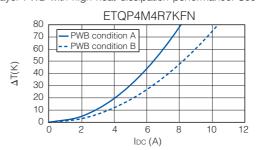

Performance Characteristics (Reference)

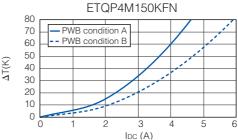
ETQP4M150KFN


Inductance vs DC Current





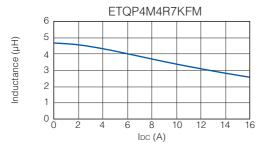

3.3

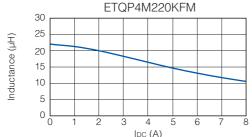


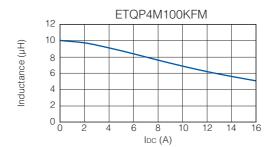
- Case Temperature vs DC Current
- PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)

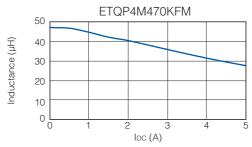
Series PCC-M0748M-LE (ETQP4M□□□KFM)

Standard r ar	19								
		1				1			
Series		Inducta	ance *1	DCR (at 20	DCR (at 20 °C) (m Ω)		Rated Current (Typ. : A)		
	Part No.	LO	Tolerance	Тур.	Tolerance	△T=40K		△L=-30%	
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)	
	ETQP4M4R7KFM	4.70		16.80(18.48)		6.5	8.8	10.7	
PCC-M0748M-LE	ETQP4M100KFM	ETQP4M100KFM 10.00		36.00(39.60)	±10	4.5	6.0	9.6	
[7.4×7.0×4.8(mm)]	ETQP4M220KFM	22.00	±20	84.10(92.51)		2.9	3.9	4.6	
	ETQP4M470KFM	47.00		148.60(163.46)		2.2	2.9	3.7	

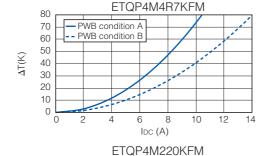

(*1) Measured at 100k Hz.

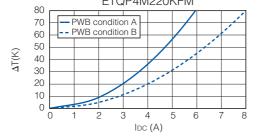

Standard Parts

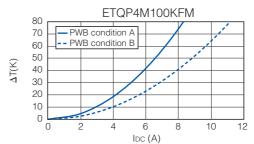

- (*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 30 K/W measured on 7.4×7.0×4.8 mm case size. See also (*5) (*4) Saturation rated current: DC current which causes L(0) drop -30 %.
- (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 - In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

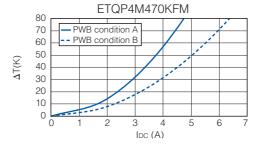

Performance Characteristics (Reference)

Inductance vs DC Current

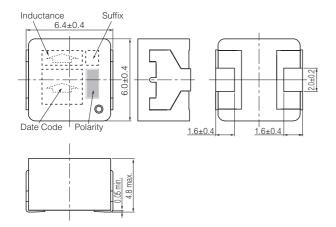


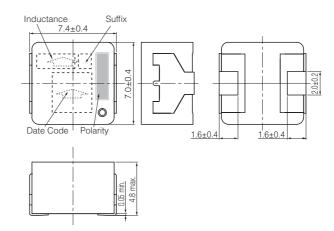






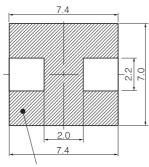
- Case Temperature vs DC Current
- PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)



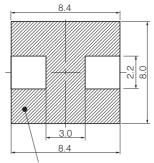

Dimensions in mm (not to scale)

Dimensional tolerance unless noted: ±0.5

Series PCC-M0648M-LE (ETQP4M□□□KFN)


Series PCC-M0748M-LE (ETQP4M□□□KFM)

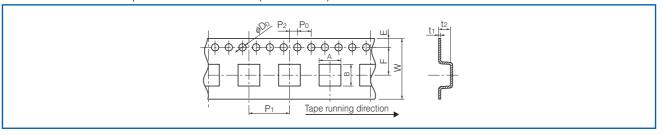
Recommended Land Pattern in mm (not to scale)


Dimensional tolerance unless noted: ±0.5

Series PCC-M0648M-LE (ETQP4M□□□KFN)

Don't wire on the pattern on shaded portion the PWB.

Series PCC-M0748M-LE (ETQP4M□□□KFM)



The same as the left.

■ As for Soldering Conditions and Safety Precautions (Power Choke Coils (Automotive Grade)),


Packaging Methods (Taping)

• Embossed Carrier Tape Dimensions in mm (not to scale)


Series	А	В	W	Е	F	P ₁	P ₂	P ₀	ϕD_0	t ₁	t ₂
PCC-M0648M-LE	6.6	7.1	16	1.75	7.5	12	2	4	1.5	0.4	5.0
PCC-M0748M-LE	7.6	8.1	16	1.75	7.5	12	2	4	1.5	0.4	6.0

• Taping Reel Dimensions in mm (not to scale)

Series	А	В	С	D	Е	W
PCC-M0648M-LE PCC-M0748M-LE	330	(100)	13	21	2	17.5

Component Placement (Taping)

Standard Packing Quantity/Reel

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel
PCC-M0648M-LE	ETQP4M□□□KFN	1,000 pcs. / box (2 reel)	500 pcs.
PCC-M0748M-LE	ETQP4M□□□KFM	1,000 pcs. / box (2 reel)	500 pcs.

Power Choke Coil (Automotive Grade)

Series: PCC-M0530M-H(MC)
PCC-M0630M-H(MC)

High heat resistance and high reliability Using metal composite core (MC)

Features

• Reduce core loss in high frequency band (More than 2 MHz)

• High heat resistance : Operation up to 150 °C including self-heating

Low profile : 3 mm max. height

SMD type

High-reliability
 High vibration resistance as result of newly developed integral construction; under

severe reliability conditions of automotive and other strenuous applications

• High bias current : Excellent inductance stability using ferrous alloy magnetic material

• Temp. stability : Excellent inductance stability over broad temp. range

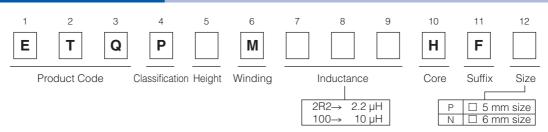
• Low audible (buzz) noise: New metal composite core technology

High efficiency
 Low Roc of winding and low eddy-current loss of the core

Shielded construction

AEC-Q200 Automotive qualified

RoHS compliant


Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 2,000 pcs./box (2 reel)

Explanation of Part Numbers

Temperature rating

Operatin	g temperature range	Tc: -40 °C to +150 °C(Including self-temperature rise)
Storage condition	After PWB mounting	ic : -40 C to +130 C(including self-temperature rise)
Storage condition	Before PWB mounting	Ta: -5 °C to +35 °C 85%RH max.

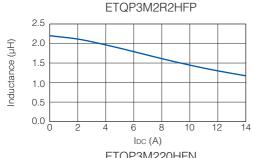
Standard Parts

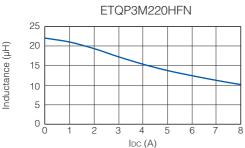
		Induct	ance *1	DCR (at 20	$^{\circ}$ C) (m Ω)	Rated Current (Typ. : A)		
Series Part	Part No.	LO	Tolerance	Тур.	Tolerance	△T=	40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
PCC-M0530M-H [5.5×5.0×3.0(mm)]	ETQP3M2R2HFP	2.2	00	19.5 (21.45)	00	5.2	6.3	9.0
PCC-M0630M-H	ETQP3M100HFN	10.0	±20	68.0 (74.8)	±20	3.0	3.7	5.5
[6.5×6.0×3.0(mm)]	ETQP3M220HFN	22.0		144.0 (158.4)		2.1	2.5	4.0

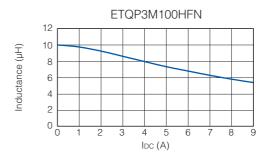
(*1) Measured at 100k Hz.

(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4)

(*3) DC current which causes temperature. See also (*5)

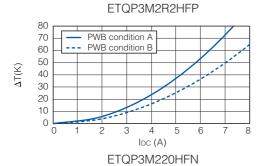

(*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 20 K/W measured. See also (*5)

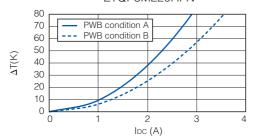

(*4) Saturation rated current: DC current which causes L(0) drop –30 %.


(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

Inductance vs DC Current

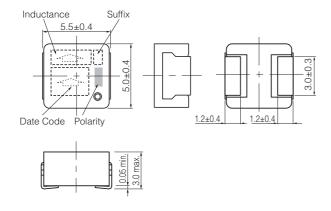


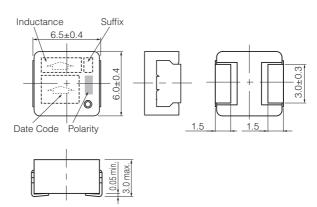




Case Temperature vs DC Current

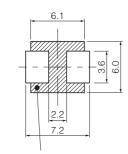
PWB condition A: Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B: Multilayer PWB with high heat dissipation performance. See also (*3)



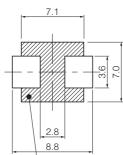

Dimensions in mm (not to scale)

Dimensional tolerance unless noted: ±0.5

Series PCC-M0530M-H (ETQP3M□□□HFP)


Series PCC-M0630M-H (ETQP3M□□□HFN)

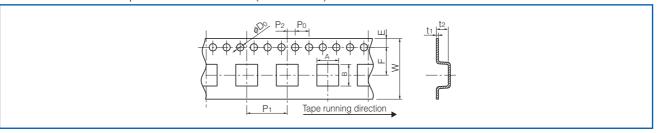
Recommended Land Pattern in mm (not to scale)


Dimensional tolerance unless noted: ±0.5

Series PCC-M0530M-H (ETQP3M□□□HFP)

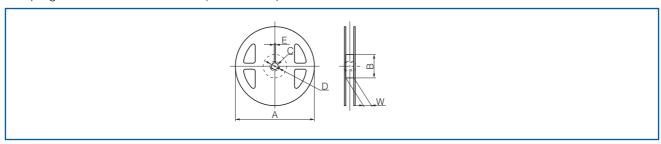
Don't wire on the pattern on shaded portion the PWB

Series PCC-M0630M-H (ETQP3MCCHFN)

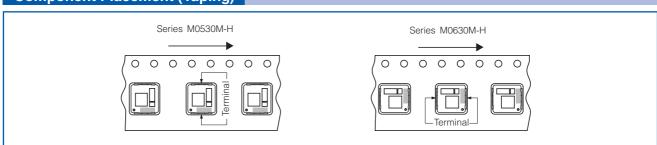


The same as the left.

■ As for Soldering Conditions and Safety Precautions (Power Choke Coils (Automotive Grade)),


Packaging Methods (Taping)

• Embossed Carrier Tape Dimensions in mm (not to scale)


Series	А	В	W	Е	F	P ₁	P ₂	P ₀	ϕD_0	t ₁	t ₂
PCC-M0530M-H	5.6	6.1	16	1.75	7.5	12	2	4	1.5	0.4	3.3
PCC-M0630M-H	7.1	6.6	16	1.75	7.5	12	2	4	1.5	0.4	3.3

• Taping Reel Dimensions in mm (not to scale)

Series	А	В	С	D	Е	W
PCC-M0530M-H PCC-M0630M-H	330	(100)	13	21	2	17.5

Component Placement (Taping)

Standard Packing Quantity/Reel

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel
PCC-M0530M-H	ETQP3M□□□HFP	2,000 pcs. / box (2 reel)	1,000 pcs.
PCC-M0630M-H	ETQP3M□□□HFN	2,000 pcs. / box (2 reel)	1,000 pcs.

Power Choke Coil (Automotive Grade)

Series: PCC-D1413H (DUST)

Realize high heat resistance, low loss and high reliability with dust core (DUST)

Industrial Property: patents 5 (Pending)

Features

High heat resistance : Operation up to 150 °C
 SMD and small package : LxWxT=14.7x13.2x13.1 mm

High-reliability
 High vibration resistance due to newly developed integral construction and severe

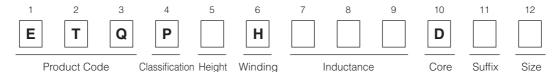
reliability condition of automotive application is covered

High bias current : Excellent inductance stability by using ferrous alloy magnetic material

High Vibration proof
 5 Hz to 2 kHz/30 G

High efficiency : Achieve by Low loss Dust core and Edgewise coil with rectangular wire

AEC-Q200 qualifiedRoHS compliant


Recommended Applications

 Driver circuits of fuel injection systems in automotive, driver circuits of diesel common rail injection, step-up power supplies for motor driver-circuits

Standard Packing Quantity

• 600 pcs./10 tray

Explanation of Part Numbers

Temperature rating

Operatin	g temperature range	Tc:-40 °C to +150 °C(Including self-temperature rise)
Storage condition	After PWB mounting	1040 0 to +150 0(including self-temperature rise)
Storage condition	Before PWB mounting	Ta:-5 °C to +35 °C 85%RH max.

Standard Parts

Part No.	Inducta	ance *1	DCR	DCR ACR	
	L0 at 0A (µH)	L1 at 10A (µH)	at 20 °C (mΩ)	at 20 kHz (m Ω)	△T=40K (A)
ETQPDH240DTV	36.0±30%	(24.0) *2	25.8 typ.	50.0 typ.	6.9

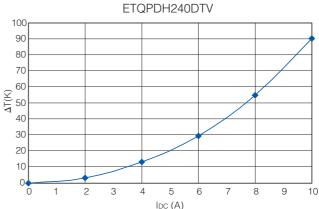
^(*1) Measured at 100 kHz.

For higher operating temperature conditions, please contact Panasonic representative in your area.

^(*2) Reference Only

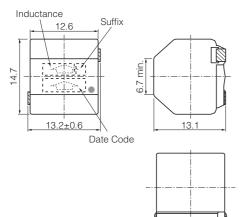
^(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature.

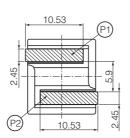
^{*} Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

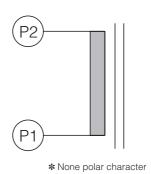

In normal case, the max. standard operating temperature of +150 °C should not be exceeded.

Performance Characteristics (Reference)

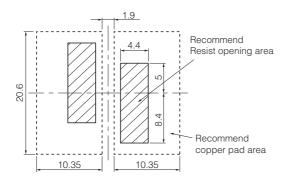
Inductance vs DC Current




Case Temperature vs DC Current

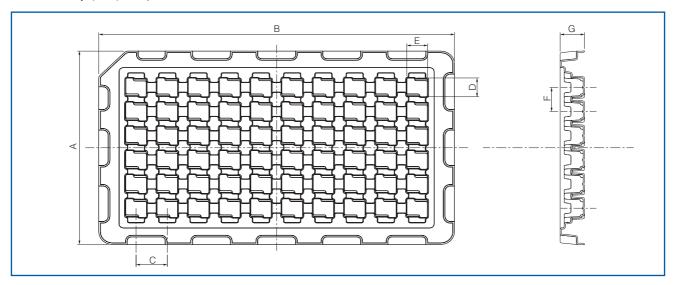

Dimensions in mm (not to scale)

Dimensional tolerance unless noted: ±0.5



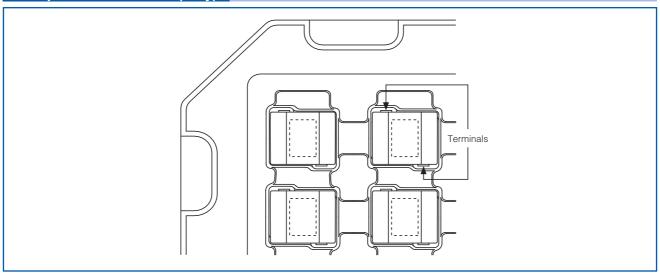
Connection

Recommended land patterns in mm (not to scale)


Dimensional tolerance unless noted: ±0.5

- Due to bigger part, Thermal Capacity is large and may occure PWB temperature differences during reflow process.
 - Recommended land pattern (Heat absorb) should be designed with reflow mountablity.
- As for Soldering Conditions and Safety Precautions (Common precautions for Power Choke Coils (Automotive Grade)),

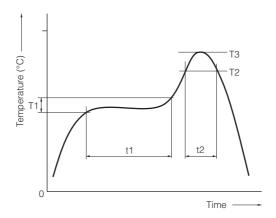
Packaging Methods (Tray)


• Blister Tray (mm) 60 pcs.

Blister Tray Dimention

Part No.	А	В	С	D	Е	F	G
ETQPDH240DTV	152	262	23	14.8	15.1	19	18

Component Placement (Tray)


Standard Packing Quantity/Tray

Part No.	Quantity
ETQPDH240DTV	600 pcs. /10 tray (60 pcs. /1 tray)

Soldering Conditions

Reflow soldering conditions

 Pb free solder recommended temperature profile Power Choke Coils (Automotive Grade)

D 1N	Prel	neat	Solde	ering	Peak Temperature		Time of
Part No.	T1 [°C]	t1 [s]	T2 [°C]	t2 [s]	T3	T3 Limit	Reflow
ETQP3MUUUYFP ETQP4MUUUYFN ETQP4MUUUYFN ETQP4MUUUYFN ETQP5MUUUYFM ETQP5MUUUYFM ETQP5MUUUYFK ETQP5MUUUYFK ETQP5MUUUYFC ETQP5MUUUYFC ETQP5MUUUYC ETQP5MUUUUKV ETQP5MUUUKV ETQP4MUUUKV ETQP4MUUUKFN ETQP4MUUUKFN ETQP4MUUUKFN ETQP3MUUUHFN ETQPDHUUUUDTV	150 to 170	60 to 120	230 °C	30 to 40	250 °C, 5 s	260°C, 10 s	2 times max.

Safety Precautions

(Common precautions for Power Choke Coils (Automotive Grade): Series DUST, Series MC)

- · When using our products, no matter what sort of equipment they might be used for, be sure to make a written agreement on the specifications with us in advance. The design and specifications in this catalog are subject to change without prior notice.
- Do not use the products beyond the specifications described in this catalog.
- This catalog explains the quality and performance of the products as individual components. Be fore use, check and evaluate their operations when installed in your products.
- Install the following systems for a failsafe design to ensure safety if these products are to be used in equip ment where a defect in these products may cause the loss of human life or other significant damage, such as damage to vehicles (au to mo bile, train, vessel), traffic lights, medical equipment, aerospace equipment, elec tric heating appliances, com bus tion/gas equipment, rotating equipment, and disaster/crime prevention equip ment.
- * Systems equipped with a protection circuit and a protection device.
- * Systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault.

Precautions for use

1. Provision to abnormal condition

This power choke coil itself does not have any protective function in abnormal condition such as overload, short-circuit and open-circuit conditions, etc.

Therefore, it shall be confirmed as the end product that there is no risk of smoking, fire, dielectric withstand voltage, insulation resistance, etc. in abnormal conditions to provide protective devices and/or protection circuit in the end product.

2. Temperature rise

Temperature rise of power choke coil depends on the installation condition in end products. It shall be confirmed in the actual end product that temperature rise of power choke coil is in the limit of specified temperature class.

3. Dielectric strength

Dielectric withstanding test with higher voltage than specific value will damage Insulating material and shorten its life.

4. Water

This Power choke coil must not be used in wet condition by water, coffee or any liquid because insulation strength becomes very low in such condition.

5. Potting

If this power choke coil is potted in some compound, coating material of magnet wire might be occasionally damaged. Please ask us if you intend to pot this power choke coil.

6. Model

When this power choke coil is used in a similar or new product to the original one, it might be unable to satisfy he specifications due to difference of condition of usage.

Please ask us if you use this power choke coil in the manner such as above.

7. Drop

If the power choke coil receives mechanical stress such as drop, characteristics may become poor (due to damage on coil bobbin, etc.). Never use such stressed power choke coil.

8. Buzz Noise

When this coil is used in the frequency band of the audible range (≒ 20 Hz to 20 kHz), or, when using in burst mode, depending on the operating conditions (conditions of the energized waveform) sounds (buzz noise) may occur. Depending on the circuit / board installation environment it may be heard as abnormal sounds, so please check in advance.

9. Solvent (Series MC)

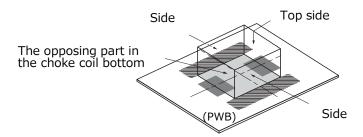
If this power choke coil is dipped in the cleaning agent, and the coating agent of the toluene and the xylene system, there is a possibility that the performance decreases greatly. Please ask us if you intend to pot this power choke coil.

10. Static electricity measures (Series MC)

1 Circuit design

Please set up the ESD measures parts such as capacitors in the former steps of this power choke coil for static electricity when there is a possibility that static electricity is impressed to the choke coil on the circuit. Moreover, please consult our company about such a case once.

2 Treatment with single


Take countermeasures against static electricity when using single power choke coil. (process and equipment) There is a possibility that the characteristic changes when the voltage of 200 V or more is impressed to this power choke coil. Please handle 200 V or less.

11. Printed circuit board design

- ① Land pattern and Via which exceed Operating Voltage, should not be placed top layer PWB under the products for keeping isolation between inside coil and surface of PWB. (Series DUST)
- ② To the opposing part in this power choke coil bottom please install neither pattern nor the beer, etc. (Series MC)

③ Parts arranged around this power choke coil do not touch the surface of this power choke coil (Top side and side). (Series MC)

This power choke coil is different from the ferrite core-type that installs general concentration GAP. It has the leakage magnetic bunch distribution of the choke coil to the vertical direction. Please be cautious when using parts and circuit compositions which are easily affected by the leakage flux.

12. Other using emviroment

This power choke coil is not designed for the use in the following, special environment.

Therefore, please do not use it in the following special environment.

- Use in place where a lot of causticity gases such as sea breeze, Cl2, H2S, NH3, SO2, and Nox exist.
- Use in place where out-of-door exposure and direct sunshine strike.

13. Core Chipping and Core Crack

This choke coil has a possibility to make partial chipping or crack in the core due to excessive mechanical stress from outside, and might have initially a partial chipping and/or cracks that do not affect the quality.

14. Keeping environment

If this power choke coil is kept under following environment and condition, there is a possibility that the performance and soldering decreases greatly.

- Keep in place where a lot of causticity gases such as sea breeze, Cl2, H2S, NH3, SO2, and Nox exist.
- Keep in place where out-of-door exposure and direct sunshine strike.

<Package markings>

Package markings include the product number, quantity, and country of origin.

In principle, the country of origin should be indicated in English.

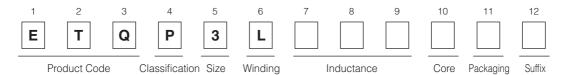
Power Choke Coil

Series: PCC-M0730L (MC)

Small mounting size for multi-phase DC/DC converter circuits

Features

- Small type (8.7×7.0×H3.0 mm)
- High power (22 A)
- Low loss (R_{DC} :1.12 m Ω)
- Tighter DCR tolerance (±7 %)
- Suitable for high frequency circuit (up to 1 MHz)
- Low buzz noise due to its gap-less structure
- RoHS compliant


Recommended Applications

- Notebook PC power supply modules
- Servers, Routers, DC/DC converters for driving CPUs

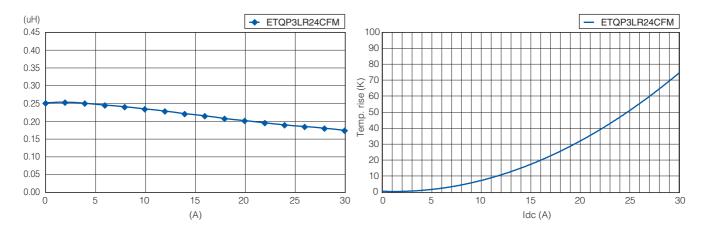
Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 3,000 pcs./box (2 reel)

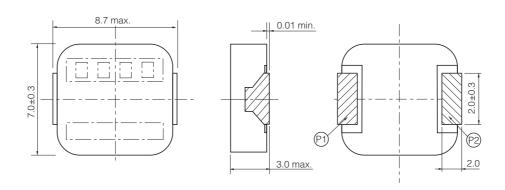
Explanation of Part Numbers

Standard Parts

Part No.	Ind	uctance (at 20°0	C)*1			
	L0 at 0A	L1 *4		Rated current	Rated current	DC resistance
	(µH)	(µH)	Measurement current (A)	(A)*2	(ref) (A)* ³	(at 20 °C) (mΩ)
ETQP3LR24CFM	0.24±20 %	(0.19)	22	22	35	1.12±7 %

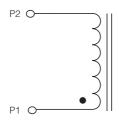

- (*1) Inductance is measured at 1.0 MHz.
- (*2) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method A)
- (*3) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method B)
- (*4) Reference only
- (*5) Method A (PANASONIC's standard measurement conditions),

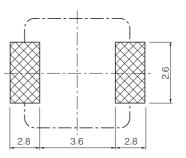
Method B (high heat dissipation measurement) is different from Method A by the measurement methods. In normal application condition, the part's temperature depends on circuit design and heat dissipation condition. This condition shall be verified by the worst operational condition.


Performance Characteristics (Reference)

Inductance vs DC Current

Case Temperature vs DC Current (Method A)




Dimensions in mm (not to scale)

Connection

Recommended land patterns in mm (not to scale)

■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Consumer use),

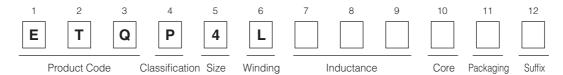
Power Choke Coil

Series: PCC-M0740L (MC)
Low DCR Type

Small mounting size for multi-phase DC/DC converter circuits

Features

- Small type (8.7×7.0×H4.0 mm)
- High power (17 A to 24 A)
- \bullet Low loss (R_{DC} :1.0 to 1.5 m Ω)
- Tighter DCR tolerance (±7 %)
- Suitable for high frequency circuit (up to 1 MHz)
- Low buzz noise due to its gap-less structure
- RoHS compliant


Recommended Applications

- Notebook PC power supply modules
- Servers, Routers, DC/DC converters for driving CPUs

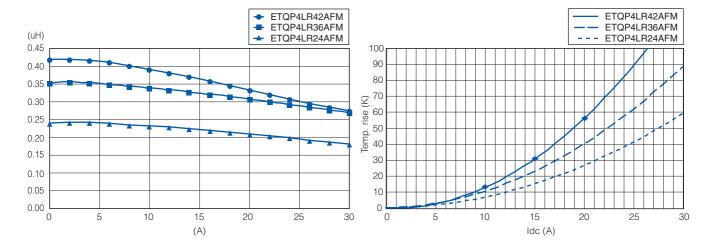
Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 3,000 pcs./box (2 reel)

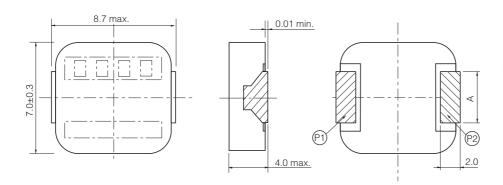
Explanation of Part Numbers

Standard Parts

Part No.	Ind	uctance (at 20 °C	C)*1			
	L0 at 0A	L1 *4		Rated current	Rated current	DC resistance
	(µH)	(µH)	Measurement current (A)	(A)*2	(ref) (A)*3	(at 20 °C) (mΩ)
ETQP4LR24AFM	0.24±20 %	(0.20)	24	24	35.5	1.00±7 %
ETQP4LR36AFM	0.36±20 %	(0.30)	20	20	31.0	1.35±7 %
ETQP4LR42AFM	0.42±20 %	(0.35)	17	17	28.5	1.50±7 %

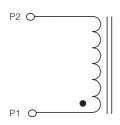

- (*1) Inductance is measured at 1.0 MHz.
- (*2) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method A)
- (*3) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method B)
- (*4) Reference only
- (*5) Method A (PANASONIC's standard measurement conditions),

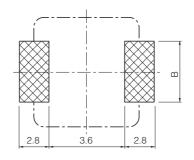
Method B (high heat dissipation measurement) is different from Method A by the measurement methods. In normal application condition, the part's temperature depends on circuit design and heat dissipation condition. This condition shall be verified by the worst operational condition.


Performance Characteristics (Reference)

Inductance vs DC Current

Case Temperature vs DC Current (Method A)


Dimensions in mm (not to scale)



Part No.	А
ETQP4LR24AFM	3.0±0.3
ETQP4LR36AFM	2.0+0.3
ETQP4LR42AFM	2.0±0.3

Connection

Recommended land patterns in mm (not to scale)

Part No.	В	
ETQP4LR24AFM	3.6	
ETQP4LR36AFM	2.6	
ETQP4LR42AFM	2.0	

■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Consumer use),

Power Choke Coil

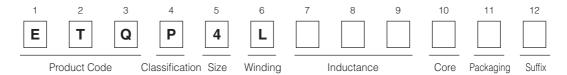
Series: PCC-M1040L (MC)

Small mounting size for multi-phase DC/DC converter circuits

Features

- Small type (11.5×10.0×H4.0 mm)
- High power (21 A to 28 A)
- ullet Low loss (R_{DC} :0.7 to 1.56 m Ω)
- Tighter DCR tolerance (±5 % to ±10 %)
- Suitable for high frequency circuit (up to 1 MHz)
- Low buzz noise due to its gap-less structure
- RoHS compliant

Recommended Applications


- Servers, Routers, DC/DC converters for driving CPUs
- Notebook PC power supply modules

Standard Packing Quantity (Minimum Quantity/Packing Unit)

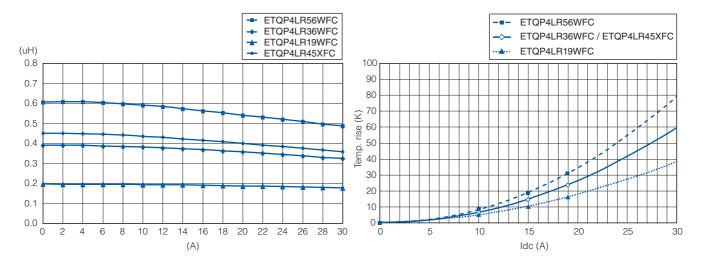
• 2,000 pcs./box (2 reel): ETQP4LR36WFC, ETQP4LR56WFC, ETQP4LR45XFC

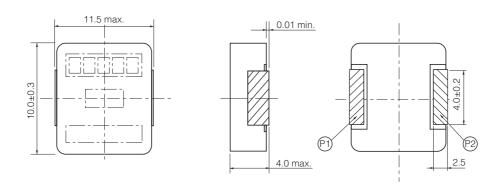
• 1,000 pcs./box (2 reel) : ETQP4LR19WFC

Explanation of Part Numbers

Standard Parts

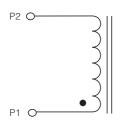
Part No.		Induc	ctance (at 20					
	L0 at 0A	L1		L2 (Reference)*4		Rated	Rated current	DC resistance
	(µH)	(µH)	Measurement current (A)	(µH)	Measurement current (A)	current (A)* ²	(ref) (A)* ³	(at 20 °C) (mΩ)
ETQP4LR19WFC	(0.20)	0.19±20 %	21	(0.17)	30	28	38	0.70±10 %
ETQP4LR36WFC	(0.37)	0.36±20 %	17	(0.34)	24	24	33	1.10± 5 %
ETQP4LR56WFC	(0.60)	0.56±20 %	15	(0.53)	21	21	28	1.56± 5 %
ETQP4LR45XFC	0.45+20%	_	_	(0.38)	25	25	33	1.10± 5 %

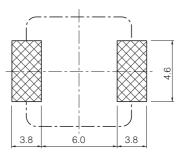

- (*1) Inductance is measured at 100 kHz.
- (*2) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method A)
- (*3) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method B)
- (*4) Reference only
- (*5) Method A (PANASONIC's standard measurement conditions),
 Method B (high heat dissipation measurement) is different from Method A by the measurement methods.
 In normal application condition, the part's temperature depends on circuit design and heat dissipation condition.
 This condition shall be verified by the worst operational condition.


Performance Characteristics (Reference)

Inductance vs DC Current

Case Temperature vs DC Current (Method A)




Dimensions in mm (not to scale)

Connection

Recommended land patterns in mm (not to scale)

■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Consumer use),

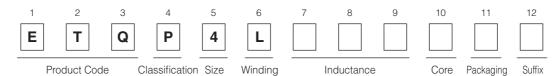
Power Choke Coil

Series: PCC-M1040L (MC)
Low DCR Type

Small mounting size for multi-phase DC/DC converter circuits

Features

- Small type (11.7×10.0×H4.0 mm)
- High power (21 A to 30 A)
- Low loss (R_{DC} :0.76 to 1.58 m Ω)
- Tighter DCR tolerance (±5 %)
- Suitable for high frequency circuit (up to 1 MHz)
- Low buzz noise due to its gap-less structure
- Shielded construction
- RoHS compliant


Recommended Applications

- Notebook PC power supply modules
- Servers, Routers, DC/DC converters for driving CPUs

Standard Packing Quantity (Minimum Quantity/Packing Unit)

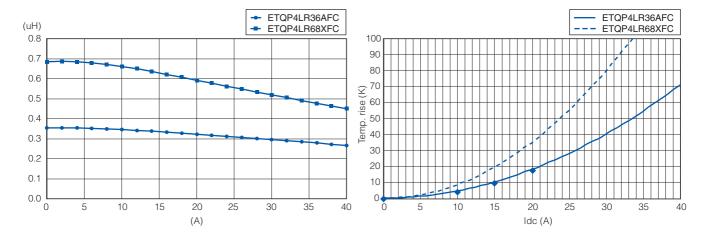
• 2,000 pcs./box (2 reel)

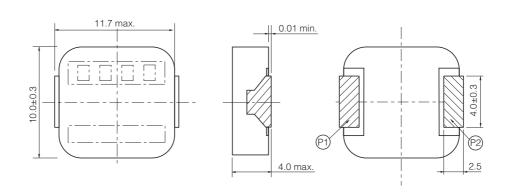
Explanation of Part Numbers

Standard Parts

	Ind	uctance (at 20 °C	C)*1		Rated current (ref) (A)*3	
D	L0 at 0A	L1	*4	Rated current (A)*2		DC resistance
Part No.	(µH)	(µH)	Measurement current (A)			(at 20 °C) (mΩ)
ETQP4LR36AFC	0.36±20 %	(0.29)	30	30	40	0.76±5 %
ETQP4LR68XFC	0.68±20 %	(0.59)	21	21	28	1.58±5 %

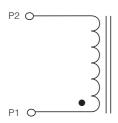
- (*1) Inductance is measured at 1.0 MHz.
- (*2) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method A)
- (*3) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method B)
- (*4) Reference only
- (*5) Method A (PANASONIC's standard measurement conditions),

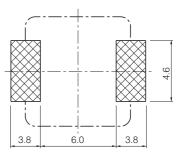

Method B (high heat dissipation measurement) is different from Method A by the measurement methods. In normal application condition, the part's temperature depends on circuit design and heat dissipation condition. This condition shall be verified by the worst operational condition.


Performance Characteristics (Reference)

Inductance vs DC Current

Case Temperature vs DC Current (Method A)




Dimensions in mm (not to scale)

Connection

Recommended land patterns in mm (not to scale)

■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Consumer use),

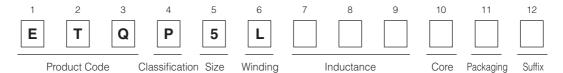
Power Choke Coil

Series: PCC-M1250L (MC)

High power, Low loss, Low-profile

Features

- High power (25 A to 30 A)
- Low loss (R_{DC} : 0.8 to 1.1 m Ω)
- Narrow R_{DC} tolerance (±5 % to ±7 %)
- Low profile (14.5×12.5×H5.0 mm)
- High frequency (up to 1 MHz)
- Low buzz noise due to its gap-less structure
- RoHS compliant


Recommended Applications

- Servers, Routers, DC/DC converters for driving CPUs
- Notebook PC power supply modules

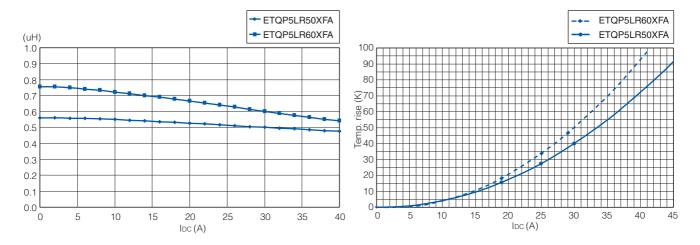
Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 1,000 pcs./box (2 reel)

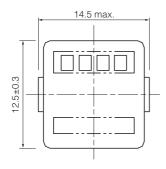
Explanation of Part Numbers

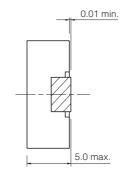
Standard Parts

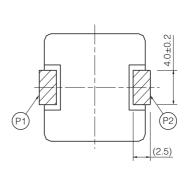
		Inductance	(at 20 °C)*1				
	L	1	L2 (Ref	erence)	Rated	DC resistance	
Part No.	(µH)	Measurement current (A)	(µH)	Measurement current (A)	current (A)* ²	(at 20 °C) (mΩ)	
ETQP5LR50XFA	0.50±20 %	30	(0.46)	42	30	0.80±7 %	
ETQP5LR60XFA	0.60±20 %	30	(0.54)	42	27	1.10±5 %	


^(*1) Inductance is measured at 100 kHz.

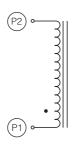
^(*2) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K.

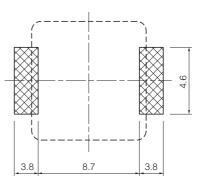

Performance Characteristics (Reference)


Inductance vs DC Current


Case Temperature vs DC Current

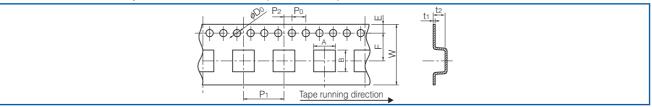
Dimensions in mm (not to scale)





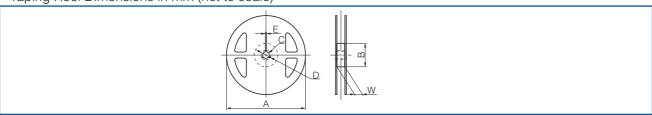
Connection

Recommended land patterns in mm (not to scale)



■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Consumer use),

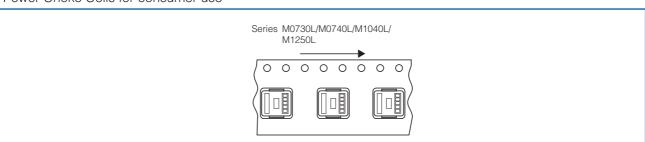
Packaging Methods (Taping)


• Embossed Carrier Tape Dimensions in mm (not to scale)

Power Choke Coils for consumer use

Series	А	В	W	Е	F	P ₁	P ₂	P ₀	φ D₀	t ₁	t ₂
PCC-M0730L	7.6	8.9	16.0	1 75	7.5	12.0	2.0	4.0	1.5	0.4	4.2
PCC-M0740L	7.6	8.9									4.3
PCC-M1040L	10.6	11.8	24.0	1.75	11.5	16.0	2.0	4.0	1.5	0.4	5.2
PCC-M1250L	13.1	14.8	24.0		11.5	10.0					5.3

• Taping Reel Dimensions in mm (not to scale)



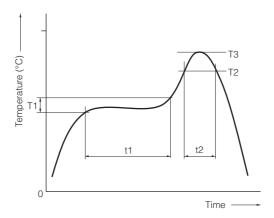
Power Choke Coils for consumer use

Series	А	В	С	D	Е	W
PCC-M0730L/M0740L						17.5
PCC-M1040L	380	80	13	21	2	25.4
PCC-M1250L						25.4

Standard Packing Quantity/Reel

• Power Choke Coils for consumer use

Standard Packing Quantity/Reel


• Power Choke Coils for consumer use

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel	
PCC-M0730L	ETQP3L□□□CFM	3,000 pcs. / box (2 reel)	1 500 pgg	
PCC-M0740L	ETQP4L□□□AFM	3,000 pcs. / box (2 feet)	1,500 pcs.	
	ETQP4L□□□WFC			
PCC-M1040L	ETQP4L□□□XFC	2,000 pcs. / box (2 reel)	1,000 pcs.	
	ETQP4L□□□AFC			
PCC-M1040L	ETQP4LR19WFC	1,000 pag / boy (2 rool)	500 pcs.	
PCC-M1250L	ETQP5L□□□XFA	1,000 pcs. / box (2 reel)	300 μcs.	

Soldering Conditions

Reflow soldering conditions

 Pb free solder recommended temperature profile Power Choke Coils for consumer use

Series	Preheat		Sold	ering	Peak Ten	Time of	
Series	T1 [°C]	t1 [s]	T2 [°C]	t2 [s]	T3	T3 Limit	Reflow
PCC-M0730L PCC-M0740L PCC-M1040L PCC-M1250L	150 to 170	60 to 120	230 °C	30 to 40	250 °C, 5 s	260 °C, 10 s	2 times max.

Safety Precautions

(Common precautions for Power Choke Coils for consumer use)

- · When using our products, no matter what sort of equipment they might be used for, be sure to make a written agreement on the specifications with us in advance. The design and specifications in this catalog are subject to change without prior notice.
- Do not use the products beyond the specifications described in this catalog.
- This catalog explains the quality and performance of the products as individual components. Be fore use, check and evaluate their operations when installed in your products.
- Install the following systems for a failsafe design to ensure safety if these products are to be used in equip ment where a defect in these products may cause the loss of human life or other significant damage, such as damage to vehicles (au to mo bile, train, vessel), traffic lights, medical equipment, aerospace equipment, elec tric heating appliances, com bus tion/gas equipment, rotating equipment, and disaster/crime prevention equip ment.
- * Systems equipped with a protection circuit and a protection device.
- * Systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault.

Precautions for use

1. Provision to abnormal condition

This power choke coil itself does not have any protective function in abnormal condition such as overload, short-circuit and open-circuit conditions, etc.

Therefore, it shall be confirmed as the end product that there is no risk of smoking, fire, dielectric withstand voltage, insulation resistance, etc. in abnormal conditions to provide protective devices and/or protection circuit in the end product.

2. Temperature rise

Temperature rise of power choke coil depends on the installation condition in end products. It shall be confirmed in the actual end product that temperature rise of power choke coil is in the limit of specified temperature class.

3. Dielectric strength

Dielectric withstanding test with higher voltage than specific value will damage Insulating material and shorten its life.

4. Water

This Power choke coil must not be used in wet condition by water, coffee or any liquid because insulation strength becomes very low in such condition.

5. Potting

If this power choke coil is potted in some compound, coating material of magnet wire might be occasionally damaged. Please ask us if you intend to pot this power choke coil.

6. Solvent

If this power choke coil is dipped in the cleaning agent, and the coating agent of the toluene and the xylene system, there is a possibility that the performance decreases greatly. Please ask us if you intend to pot this power choke coil.

7. Static electricity measures

① Circuit design

Please set up the ESD measures parts such as capacitors in the former steps of this power choke coil for static electricity when there is a possibility that static electricity is impressed to the choke coil on the circuit. Moreover, please consult our company about such a case once.

② Treatment with single

Take countermeasures against static electricity when using single power choke coil. (process and equipment) There is a possibility that the characteristic changes when the voltage of 200 V or more is impressed to this power choke coil. Please handle 200 V or less.

8. Core Chipping and Core Crack

This choke coil has a possibility to make partial chipping or crack in the core due to excessive mechanical stress from outside, and might have initially a partial chipping and/or cracks that do not affect the quality.

9. Storage temperature

-5 °C to +35 °C

10. Operating temperature

Minimum temperature: -40 °C (Ambient temperature of the power choke coil)

Maximum temperature: 130 °C (Ambient temperature of the power choke coil plus the temperature rise)

100 °C (Only series: PCC-F126F(N6))

11. Model

When this power choke coil is used in a similar or new product to the original one, it might be unable to satisfy he specifications due to difference of condition of usage.

Please ask us if you use this power choke coil in the manner such as above.

7. Drop

If the power choke coil receives mechanical stress such as drop, characteristics may become poor (due to damage on coil bobbin, etc.). Never use such stressed power choke coil.

<Package markings>

Package markings include the product number, quantity, and country of origin.

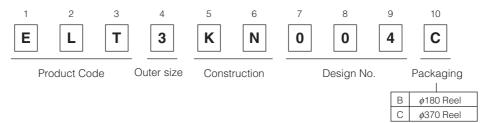
In principle, the country of origin should be indicated in English.

Voltage Step-up Coils

Series: Chip Type: 3KN

High inductance Voltage Step-up coil chip series for piezoelectric buzzers and DC/DC circuitry of EL panels

ELT3KN

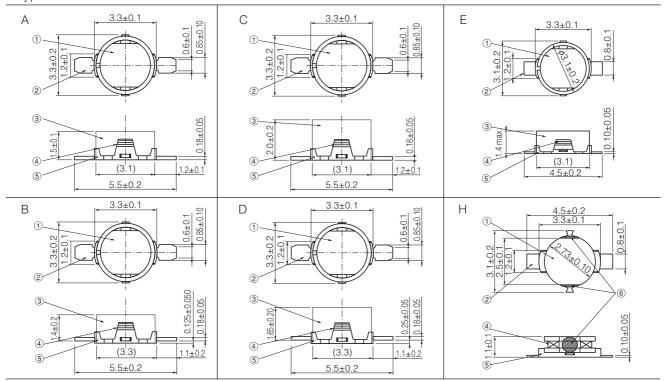

Features

- Small and thin
- High inductance
- RoHS compliant

Recommended Applications

- Piezoelectric buzzer, Booster circuit for EL backlight (Watch, Electric thermometer, Portable device)
- HAC inductor (Smartphone, Cellular phone)

Explanation of Part Numbers



Standard Packing Quantity

• 1,000 or 5,000 pcs./reel

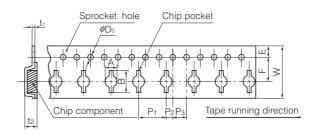
Dimensions in mm (not to scale)

Type 3KN

Part Name: ① Core ② Terminal ③Ring ④ Coil ⑤ Terminal board ⑥ Adhesive

Standard Parts								
5	Induc	ctance	R. [D. C	I.D.C		Magnetic	
Part No.	(mH)	Tolerance(%)	(Ω)	Tolerance(%)	(mA) max.	Dimensions	Composition	
ELT3KN004□	14.00	40	125	10	1.7		Dama allan dia a	
ELT3KN007□	20.00	±40	170	±10	1.4	1	Permalloy ring	
ELT3KN113□	1.00		34		25.0	A		
ELT3KN126□	1.50	±10	49	±15	29.0		Brass ring	
ELT3KN142□	0.82] [24	1	30.0			
ELT3KN019□	14.00	±40	125	±10	1.7		Permalloy ring	
ELT3KN109□	3.80	±10	115	±20	15.0	В	Brass ring	
ELT3KN114□	2.50] ±10 [83	±15	15.0		Drass filly	
ELT3KN014□	30.00	±40	150	±13	1.9			
ELT3KN018□	35.00	±40	235	±10	1.9		Permalloy ring	
ELT3KN028□	50.00	±35	250	±15	1.4		T enhalloy fing	
ELT3KN032□	25.00	±40	185	±10	10.0			
ELT3KN101□	10.00		285	±10	1.4			
ELT3KN104□	1.00		35		30.0			
ELT3KN118□	2.50		64		20.0			
ELT3KN121□	1.00		22.5		40.0	- C		
ELT3KN122□	2.00		44		20.0			
ELT3KN123□	1.00	±10	25		30.0		Brass ring	
ELT3KN124□	4.00		85		15.0		Diass iiig	
ELT3KN127□	0.47		14	±15	50.0			
ELT3KN128□	0.56		15	1 10	45.0			
ELT3KN129□	0.68		17		34.0			
ELT3KN130□	2.30		51		23.0			
ELT3KN131□	2.00		44		20.0			
ELT3KN020□	30.00	±30	150		2.5		Permalloy ring	
ELT3KN111□	7.50	±10	177		10.0	D	Brass ring	
ELT3KN125□	4.00	210	85		15.0		Brade fing	
ELT3KN041□	14.00		125		1.7			
ELT3KN042□	20.00	±40	175	±10	1.4		Permalloy ring	
ELT3KN043□	12.00		117		1.7	1		
ELT3KN139□	0.68	_	19	_	40.0	_		
ELT3KN140□	0.82		22	±15	30.0	_		
ELT3KN135□	1.10		32		30.0	E		
ELT3KN136□	2.00		55		20.0		Brass ring	
ELT3KN137□	4.00]	117	±10	15.0]	2.00011119	
ELT3KN149□	0.33	±10	11	_	60.0	_		
ELT3KN151□	0.56		17	±15	50.0	_		
ELT3KN152□	0.47]	14		50.0			
ELT3KN155□	1.10]	38		25.0	Н	Ring less	
ELT3KN162□	4.00]	117	±10	15.0	- E	Brass ring	
ELT3KN163□	1.10		32	±15	30.0		2009	

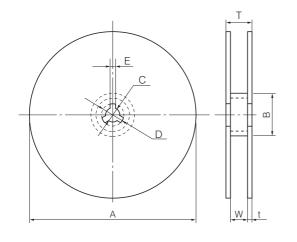
[&]quot;


" shows the packaging specifications.

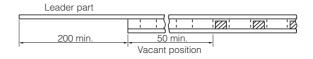
Packaging Methods

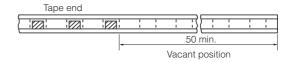
Standard Packing Quantity

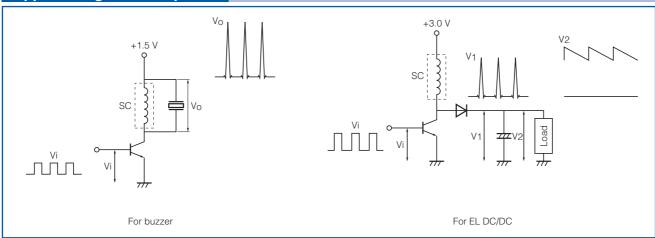
Packaging	ELT3KN	Kind of Taping
В	1,000 pcs.	Embossed Carrier
С	5,000 pcs.	Taping


• Embossed Carrier Tape Dimensions in mm (not to scale)

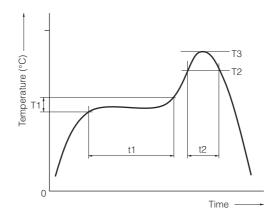
Part No.	А	В	W	F	Е	P ₁
ELT3KN	3.7	6.4	12.0	5.5	1.75	8.0


Part No.	P ₂	P ₃	ϕD_0	t ₁	t ₂
ELT3KN	2.0	4.0	1.5	0.3	2.6


• Reel Dimensions in mm (not to scale)


Packaging	А	В	С	D	Е	W	t	Т
В	180	60	13	21	2	13	1.1	15.2
С	370	60	13	21	2	14	2.0	18

Leader Part, Vacant Position


Applied Diagram Examples

Soldering Conditions

Reflow soldering conditions

• Pb free solder recommended temperature profile

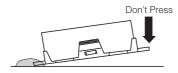
Part No.	Preheat		Sold	ering	Peak Ten	Time of	
	T1 [°C]	t1 [s]	T2 [°C]	t2 [s]	ТЗ	T3 Limit	Reflow
ELT3KN	150 to 170	60 to 120	230 °C	30 max.	245 °C, 10 s	260 °C, 10 s	2 times max.

(Common precautions for Voltage Step-up Coils)

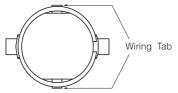
- When using our products, no matter what sort of equipment they might be used for, be sure to make a written agreement on the specifications with us in advance. The design and specifications in this catalog are subject to change without prior notice.
- Do not use the products beyond the specifications described in this catalog.
- This catalog explains the quality and performance of the products as individual components. Before use, check and evaluate their operations when installed in your products.
- Install the following systems for a failsafe design to ensure safety if these products are to be used in equipment where a defect in these products may cause the loss of human life or other significant damage, such as damage to vehicles (automobile, train, vessel), traffic lights, medical equipment, aerospace equipment, electric heating appliances, combustion/gas equipment, rotating equipment, and disaster/crime prevention equipment.
- * Systems equipped with a protection circuit and a protection device
- * Systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault

⚠ Precautions for use

1. Operation range and environments


- (i) These products are designed and manufactured for general and standard use in general electronic equipment (e.g. AV equipment, home electric appliances, office equipment, information and communication equipment)
- ② These products are not designed for the use in the following special conditions. Before using the products, carefully check the effects on their quality and performance, and determine whether or not they can be used.
 - In liquid, such as water, oil, chemicals, or organic solvent
 - In direct sunlight, outdoors, or in dust
 - In salty air or air with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO₂
 - In an environment where these products cause dew condensation

2. Handling


- ① Do not bring magnets or magnetized materials close to the product. The influence of their magnetic field can change the inductance value.
- ② Do not apply strong mechanical shocks by either dropping or collision with other parts. Excessive schock can damage the part.

3. Resoldering with a soldering iron

① Resoldering should be done within 3 seconds by soldering iron, the temperature with 350 °C or less and should be cooling down after ward. Both side of terminals shall be fixed closely to PWB. And terminals shall not be pressed in heating.

2 The wiring tab shall not be held by sharp-edged tool.

3 Iron shall not be put to the component itself.

4. Mounting side

- ① External force must be less than 4.9N while mounting.
- ② The wiring tab is expose the terminal, so please be careful when you design PWB pattern of coil circumference.

5. Cleaning

If you clean the inductor, please use own your ultrasonic cleaning to check specified conditions.

6. Storage conditions

Normal temperature (-5 to 35 °C), normal humidity (85 % RH max.), shall not be exposed to direct sunlight and harmful gases and care should be taken so as not to cause dew.

<Package markings>

Package markings include the product number, quantity, and country of origin. In principle, the country of origin should be indicated in English.

CAUTION AND WARNING

- 1. The electronic components contained in this catalog are designed and produced for use in home electric appliances, office equipment, information equipment, communications equipment, and other general purpose electronic devices.

 Before use of any of these components for equipment that requires a high degree of safety, such as medical instruments, aerospace equipment, disaster-prevention equipment, security equipment, vehicles (automobile, train, vessel), please be sure to contact our sales representative.
- 2. When applying one of these components for equipment requiring a high degree of safety, no matter what sort of application it might be, be sure to install a protective circuit or redundancy arrangement to enhance the safety of your equipment. In addition, please carry out the safety test on your own responsibility.
- 3. When using our products, no matter what sort of equipment they might be used for, be sure to make a written agreement on the specifications with us in advance.
- 4. Technical information contained in this catalog is intended to convey examples of typical performances and/or applications and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of our company or any third parties nor grant any license under such rights.
- 5. In order to export products in this catalog, the exporter may be subject to the export license requirement under the Foreign Exchange and Foreign Trade Law of Japan.
- 6. No ozone-depleting substances (ODSs) under the Montreal Protocol are used in the manufacturing processes of Industrial Solutions Company, Panasonic Corporation.

 7. The information contained on this material may not be reprinted or reproduced whether wholly or in part, without the prior written permission of Panasonic Corporation.

Safety Precautions

• When using our products, no matter what sort of equipment they might be used for, be sure to confirm the applications and environmental conditions with our specifications in advance.

Please contact

■ Factory

Device Solutions Business Division Industrial Solutions Company Panasonic Corporation 1006 Kadoma, Kadoma City, Osaka 571-8506, JAPAN