

联系电话: 021-61312126

目录

一、	产品说明	3
1.1	产品特点	3
1.2	产品外观尺寸图	4
=,	产品技术参数	5
三、	产品功能说明	8
3.1	功能简述	9
3	3.1.1 命令模式	10
3	3.1.2 透传模式	10
四、	接口定义	12
4.1	引脚定义	12
4.2	硬件接口描述	13
4	H.2.1 外部电源	14
4	1.2.2 复位	14
4	1.2.3 模块控制	14
4	I.2.4 UART 接口	15
4	1.2.5 模块状态指示	16
4	1.2.6 睡眠控制	17
4	1.2.7 扩展 GPIO	18
4.3	典型应用电路	18
4.4	天线设计	19
	应用各个	20

一、产品说明

LCM1-6505D 是一款 LoRaWAN Node 模块。本模块集成了 LoRaWAN™ 协议栈,符合 LoRa Alliance 发布的 LoRaWAN™ Specification 1.01 Class A 标准。6505D 系列 硬件支持全频段,315M、470M、868M、915M 等超宽频段(使用不同频段时,需要提前说明,选择合适天线)。

模块采用串行接口与用户设备进行数据、指令交互,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据等业务。

LCM1-6505D 模块具有功耗低、传输距离远、抗干扰能力强,适用于多种应用场合:物联网低功耗应用(IoT)、自动抄表、智慧城市、工业自动化、智能家居等。

1.1 产品特点

☑工作电压: 3.0~3.6 V;

☑频段: 150-960MHz;

☑发射功率: 19±1 dBm(max);

☑超高接收灵敏度: -136±1dBm(@SF=12);

☑超远有效通讯距离: 5Km (城市公路环境,非旷野环境);

☑符合 LoRaWANTM Specification 1.01 标准, 支持 EU433、CN470 同频协议等;

☑内部集成 LoRaWAN™协议栈,支持 Class A\Class C 设备类型;

☑低功耗: 待机电流 <2 uA;

☑UART 通信,对外接口为邮票孔,简易指令配置模块参数:

1.2 外观尺寸图

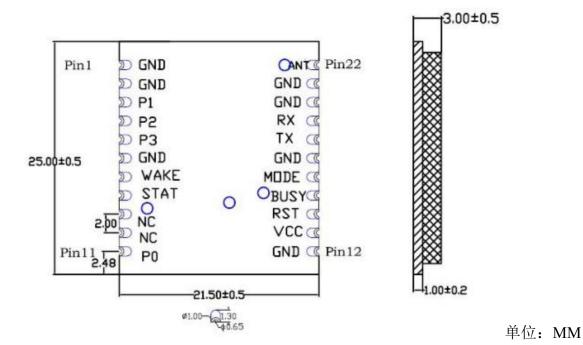


图 1 尺寸图

二、产品技术参数

表 2-1 模块技术参数

主要参数		描述	备注
	协议版本	LoRaWAN TM Specification 1.01final	更新时间 2016 年 6 月
	物理层	EU433、CN470~510、868、915 同频 等	
协议标准	网络拓扑	Star	接入 LoRaWAN 网关,形成星-星型网络拓扑
沙 区外1庄	设备类型	Class A\Class C	暂不支持 Class B
	网络接入方式	OTAA\ABP	
	发送寻址模式	广播	
	调制方式	LoRa\FSK	
	数据速率	SF12~SF7、50Kbps(FSK)	
	串口接口	2线	兼容 3.3V TTL\CMOS
接口特性	串口波特率		用户可配置透传模式的串口波特率,命令模式固定使用 9600bps
	主天线接口	邮票孔 50 Ω 输出	
. 11.4 + 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4 - 11.4	接口封装类型	邮票孔(2×11pin×2.0mm)	
机械特性	PCBA 尺寸	25(L) ×21.5(W) ×3 (H) mm	(GB/T1804-c)

表 2-2 直流特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作电压	-		3.3	3.6	V	保证最大输出功率 20dBm
工作电流						
平均电流	正常工作,9600Bps	-	2.4	-	mA	
	RTC 打开	-	2	-	uA	
峰值电流	最大输出	-	-	130	mA	

表 2-3 射频特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
	测试电压: 3.3V					
工作频段	测试温度: 室温	433	-	510	MHz	
发射特性	OOK 模式	,载波输出	H, PA_BO	OST ON,25°	C环境温度	
最大发射功率	PA_BOOST 输出,功率满	18	19	20	dBm	
二次谐波	负荷,使用 9020A 频谱仪 测试		-40		dBm	
发射电流	射频最大发送功率					实际使用时电流
(射频部分)	输出,仪器负载		120		mA	与天线环境有关
接收特性	PER = 1%, CR = 4/6	, CRC ON	, Preamble	Length = 12	, Packet L	ength = 10
	SF12	-	-136	-	dBm	
接收灵敏度	SF7	-	-123	-	dBm	平坦度<0.5dB
接收电流						
(射频部分)		-	12	-	mA	
频率特性	频率稳定	定度: 15pp	m@-40°C~8	35℃		

表 2-4 环境特性参数

7 - 1 / 2011 / 22									
主要参数	测试条件	最小值	典型值	最大值	单位	备注			
工作温度	-	-40	-	~85	$^{\circ}$ C				
存储温度	-	-40	-	125	$^{\circ}$				
工作湿度	-	5	-	95	%				
ESD 防护	-	-	-	TBD	V				

三、产品功能说明

本模块与用户主板连接时,主要包括串口接口、复位、唤醒、模式控制、状态输 出 及供电接口等。模块应用框图如下图 3-1 所示。

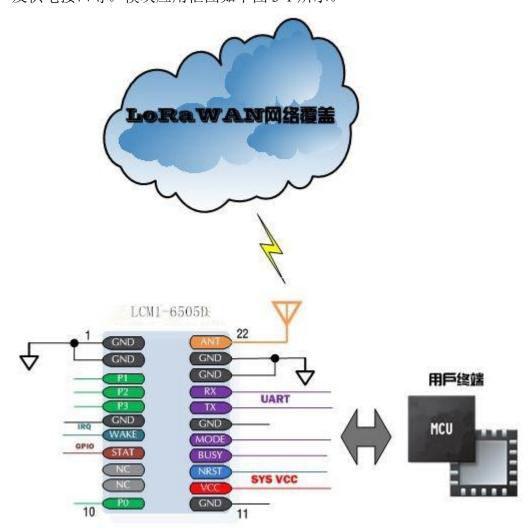
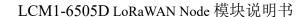



图 3-1 模块应用框图

3.1 功能简述

本模块集成了 LoRaWAN™ 协议栈,符合 LoRa Alliance 发布的 LoRaWAN™ Specification 1.01,支持 Class C 设备类型,从空口支持的频段来看,模块功能包括:

- a) LoRaWAN CN470~510 同频应用等
- b) LoRaWAN CN470 应用等

本模块通过串口与用户进行数据/指令交互。

模块工作模式分为透传模式与命令模式。

用户在命令模式通过 AT 指令配置 LoRaWAN 网络参数(如果未配置,将采用默认参数配置)。

模块在透传模式转发用户数据。串口收到一帧数据后,BUSY 引脚拉低(忙),直到这一帧数据传输完成(成功或失败)。如果传输失败,在 BUSY 引脚回到高电平(不忙)的同时,STAT 引脚拉低,当用户写新的一帧数据或者通过命令模式读取传输失败信息时,STAT 引脚回到高电平状态。同时,用户也可以配置模块输出更多详细信息(RSSI、SNR等)

用户首次使用,需要配置模块必要的网络参数,并执行保存命令后,复位模块 (模块将以新参数来初始化),然后切换为透传模式。

缺省情况下,模块会自动加入设定的 LoRaWAN 网络,并启动运行。用户可以通过判断 STAT 引脚状态,或者进入命令模式查询当前数据发送结果等详细信息,以获取模块入网结果等信息。

模块分为激活状态与睡眠状态。用户通过控制 WAKE 引脚来进入或者退出睡眠状态。激活状态细分为两种子模式,用户通过 MODE 引脚选择子模式,子模式具体定义如表 3-1 所示。

表 3-1 模块激活状态的子模式

工作模式	描述
透传模式	转发用户数据。可以选择详细信息输出等,方便调试
命令模式	通过 AT 指令读取状态或配置参数,有些参数需要使用保存指令,并复位才生效

3.1.1 命令模式

在命令模式下,用户可以通过串口发送 AT 指令来访问模块。用户端发送指令 给模块,模块解析接收到的命令,并返回一个命令响应帧,指示所接收命令的执行 结果。

3.1.2 透传模式

在透传模式下,模块直接转发用户数据。

如果开启 LoRaWAN 网络的 ADR 机制,由于每个空口数据包的最大数据长度 可能会动态变化,为了保证数据传输可靠性与完整性,引入一种简单的流控机制。

1) 流控机制

用户自行决定一帧数据的长度。当串口超过 10ms 未接收到新的串口数据数据 或者达到物理分包上限时,判定一帧数据传输完成,立即拉低 BUSY 引脚(忙),关 闭串口接收,进行发送操作。发送完成后(成功或失败),BUSY 引脚重新拉高,如 果 WAKE 引脚仍为高电平,则重新开启模块的串口接收。

2) 物理分包

实际的物理分包参照《LoRaWAN Regional Parameter V1.0.2》,用户可以通过 AT 指令查询响应参数,或者要求详细信息输出,来获取分包情况。

通常情况下,不同速率对应的最大负载值 N,如表 3-2 所示:

表 3-2 不同速率对应的最大负载值

SF	N (MAX)
7	222
8	222
9	115
10	51
11	51
12	51

3) 服务器响应

根据 LoRaWAN 网络 Class A 运行特点,任何一包数据,用户服务器都可以给 出响应,如果模块收到用户服务器数据,会立即通过串口输出。

四、接口定义

4.1 引脚定义

所有 I/O 口为 CMOS 与 TTL 兼容。模块引脚功能如表 4-1 所示: 表 4-1 引脚定义

引脚	功能定义	端口类型	缺省值3	描述
1	GND	Power	-	接系统地
2	GND	Power	-	接系统地
3	P1	I/O	Low	扩展功能 ¹ ,比如 GPIO/ADC
4	P2	I/O	Low	扩展功能¹,比如 GPIO/ADC
5	Р3	I/O	Low	扩展功能 ',比如 GPIO/ADC
6	GND	Power	-	接系统地
7	WAKE	Input	Float	唤醒\关闭模块
8	STAT	Ouptut	Low	状态指示
9	NC	NC	-	悬空处理
10	NC	NC	-	悬空处理
11	P0	I/O	Low	扩展功能 ',比如 GPIO/ADC
12	GND	Power	-	接系统地
13	VCC	Power	-	系统供电,供电范围 2.5~3.6V
14	NRST	Reset	PULL-UP	复位模块,内部弱上拉,低电平有效,用户若不使用,可以悬空处理
15	BUSY	Output	Low	模块忙信号输出

				工作模式控制,根据用户控制电平,
				内部自动上\下拉
16	MODE	Input	Low	
17	GND	Power	-	接系统地
18	TXD	Output	High	串口发送端(TX)
19	RXD	Input	High-impendance	串口接收端(RX)
20	GND	Power	-	接系统地
21	GND	Power	-	接系统地
22	ANT	RF	-	射频出口.注意使用 50Ω阻抗线

注 1: 扩展功能用于开放 IO 的操作。

注 2: 淡蓝色标注是客户系统最小使用的引脚。

注 3: 缺省值,描述的是用户尚未对模块进行任何配置、首次上电后的引脚状态。

4.2 硬件接口描述

使用 LCM1-6505D 模块进行硬件设计时,根据实际应用,需要合理选择与设计 所需接口及其外围电路。

LCM1-6505D 模块应用接口包括以下:

- ☑ 外部电源
- ☑ 复位
- ☑ 模式控制
- ☑ UART 接口
- ☑ 模块状态指示

☑ 睡眠控制

☑ 扩展 GPIO

4.2.1 外部电源

用户在使用本模块时,首先需要保证外部电源能够充足的供电带载能力,并且供电范围需要严格控制在 2.5V~3.6V 之间。高于模块供电范围,会导致模块的主芯片损坏;低于模块供电范围,会影响射频电路工作,无法保证输出最大功率。

4.2.2 复位

用户给模块 NRST 引脚提供一个至少 1ms 低脉冲(或者直接拉低),会复位模块。模块复位后,需要等待复位延时时间为 150ms,保证模块系统初始化完成。模块复位引脚功能如表 4-2 所示:

引脚 描述 接口 定义 I/O 备注 复位 14 **NRST** Input 模块复位后,用 模块正常运行 高电平 户需要等待复位 延时时间,才可 模块保持复位状态 (复位 低电平 以操作模块 MCU)

表 4-2 复位引脚功能

4.2.3 模块控制

模块有在两种工作模式,用户通过 MODE 引脚来选择工作在哪种模式。用户如果不知道模块当前的工作模式,可以通过读取该引脚的状态来获取。模块模式控制引脚功能如表 4-3 所示:

表 4-3 模式控制引脚功能

接口	引脚	定义	I/O	描述	备注

www.leeyz.com

				若模块检测信号:	
模式	16	MODE	Input	高电平 检测到高电平脉冲(上升沿&高电平)进	
控制				入并驻留在命令模式	
				低电平 检测到低电平脉冲(下降沿&低电平)进	
				入并驻留在透传模式	

4.2.4 UART 接口

模块提供一个 UART 接口,结合自定义的软件流控制,来完成串口通信,缺省 串口设置为 9600N81, 对外接口电平为 3.3V TTL\CMOS 电平。

用户每次发送数据前,拉高 WAKE 引脚,等待 10ms 后,唤醒模块(以便模块 准备好串口等)。用户拉低 WAKE 引脚,则模块进入睡眠模式。串口接口功能如表 4-4 所示:

表 4-4 串口接口

接口	引脚	定义	I/O	描述	备注
UART	18	TXD	Output	串口发送端(TX)	模块的 TX
					信号方向
	19	RXD	Input	串口接收端(RX)	模块的 RX
					信号方向

15	BUSY	Output	模块忙信号输出。	空口速率
				所指定的
				最大数据
				包大小请
			醒)	见表 3.2
			☑此时,若模块处于透传模式,	
			BUSY 会立即拉低,开始执行加入	
			网络等操作;	
			 ☑若模块处于指令模式,BUSY 输	
			出高后,则用户可以开始执行AT	
			指令操作。	
			数据通信	
			MCU 可以继续向模块	
			写入数据。	
			低电平模块忙。指示用户 MCU	
			暂停向模块写入数据。	
_			Little no TEL 197	
7	WAKE	Input	模块唤醒\睡眠	
			高电平 用户发送数据前,必须拉高 WAKE 引 	
			脚,	
			一 并等待 10ms 时间,唤醒模块	

4.2.5 模块状态指示

模块的 STAT 引脚目前定义两种功能:

(1) 模块在首次接入 LoRaWAN 网络时,首先执行加入网络操作,在 JOIN 过 程中, STAT 引脚始终保持为低电平, 直到模块成功加入网络, 此时 STAT 输出高电 平,模块可以正常处理用户的串口数据。用户此时可以通过特定 AT 指令来进一步

获取详细的状态信息。

注: 在搜索网络过程中,用户此时可以通过特定 AT 指令来进一步获取详细的状态 信息。用户查询完成后,立即切换会透传模式。

(2) 模块在接入 LoRaWAN 网络后,会动态更新模块的网络状态,状态变化 通过 STAT 引脚输出。如果模块模块本次数据操作异常, STAT 引脚输出为低电平, 用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。状态指示引脚功能 如表 4-5 所示:

接口	引脚	定义	I/O	描述			备注			
10-4-	0	GT + T			具体异常					
状态 输出	8	STAT	Output	Output	Output	AT Output	入网阶段	STA	AT 引脚表示入网状态	 状态可以 特定 AT
					高电平	模块入网成功	命令读取			
					低电平	模块未入网,等待入网成功				
				No.	数据通信		即表示本次数据通信的结果	-		
						:次空口数据通信发\ 收成功 	_			
						*1八上口效抗也旧及\収入效				

表 4-5 状态指示引脚

在数据通信阶段,建议用户在每次与模块完成一次数据交互后,判断 STAT 引 脚状态,已获得当前数据包的空口处理结果。

4.2.6 睡眠控制

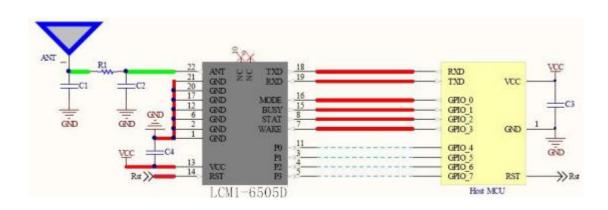
为了满足低功耗应用场景,用户在不需要使用的时候,可以通过拉低睡眠引脚 WAKE,并至少保持 5ms,控制模块进入睡眠状态。在睡眠状态,模块将不进行任何 数据操作,但仍然会保存入网信息等。用户通过拉高 WAKE 引脚,并至少保持 5ms, 可以唤醒模块,唤醒后可以便进行正常的数据操作。睡眠控制如表 4-6 所示:

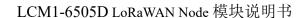
表 4-6 睡眠引脚

接口	引脚	定义	I/O	描述			
					若 WAKE 引脚处于		
睡眠	7	WAKE	Input	高电平	唤醒模块,模块处于正常工作状态		
引脚				低电平	控制模块进入休眠		

4.2.7 扩展 GPIO

模块提供了 P0-P3 扩展 GPIO 口,用户当前可以通过 AT+GPIO 指令,控制指定的 GPIO 口输出高\低电平。扩展 GPIO 说明,如表 4-7 所示:


表 4-7 扩 展 GPIO


接口	引脚	定义	I/O	描述	备注	
GPIO	11	Р0	Output	通过 AT+GPIO 指令控制输出高电平或者低电平		
GPIO	3	P1	Output	通过 AT+GPIO 指令控制输出高电平或者低电平		
GPIO	4	P2	Output	通过 AT+GPIO 指令控制输出高电平或者低电平		
GPIO	5	Р3	Output	通过 AT+GPIO 指令控制输出高电平或者低电平		

4.3 典型应用电路

用户接口: 串口、GPIO、电源等

天线接口: 50Ω邮票孔输出

说明:

- 1: 加粗 Trace 为系统所需连接(推荐)。
- 2: 天线出口 (ANT<->PIN22) 的绿色 Trace 要求 50Ω阻抗匹配。
- 3: 缺省情况下, R1 为 0Ω, C1, C2 为空贴。C4 空贴(只做预留)。
- 4、R1、C1、C2 参数的具体取值,由产品进行天线匹配后确定。
- 5、天线部分的 Layout 设计,请参考我司《射频 PCB LAYOUT 设计规则(适用 sub-1GHZ 及蓝牙模块) WSN 160824》。

4.4 天线设计

天线设计直接关系到产品的通信性能。不同终端根据天线大小、成本、性能会选择不同类型的天线,短距离天线中比较常见的有 PCB 天线、芯片(陶瓷)天线、弹簧天线、鞭状天线等。选择天线时,需要主要考虑如下几个最重要的参数:在天线周围不同方向上的辐射变化、天线效率、天线工作时需要的带宽以及需要提供给天线的功率等。其中,天线带宽的典型定义是反射波衰低于-10dB 或者 VSWR 小于2 的频率范围,即天线反射功率小于 10%的频率范围。

目前面向 LoRa 表类应用,我司主要提供弹簧天线与折线天线两种形式.

五、应用场合

无线门禁考勤 无线电力测控 石化无线测控 油田无线测控 无线机房监控

无线智能家庭 无线智能公交 无线点餐系统 无线安防报警 无线仓库监测

RFID 数据传输 无线医疗监护 无线管线监测 无线水利监测 无线智能交通

无线电力抄表 无线三表集抄 无线智能家居 无线路灯控制 无线定位系统