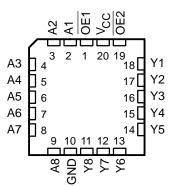
SN54ALS541 ... J PACKAGE SN74ALS540 ... DW. N. OR NS PACKAGE

SDAS025D - APRIL 1982 - REVISED MARCH 2002

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- pnp Inputs Reduce dc Loading
- Data Flowthrough Pinout (All Inputs on Opposite Side From Outputs)

description

These octal buffers and line drivers are designed to have the performance of the popular SN54ALS240A/SN74ALS240A series and, at the same time, offer a pinout with inputs and outputs on opposite sides of the package. This arrangement greatly facilitates printed circuit board layout.


The 3-state control gate is a 2-input NOR gate such that, if either output-enable (OE1 or OE2) input is high, all eight outputs are in the high-impedance state.

The SN74ALS540 provides inverted data. The 'ALS541 provide true data at the outputs.

The -1 versions of SN74ALS540 and SN74ALS541 are identical to the standard versions, except that the recommended maximum I_{OL} is increased to 48 mA. There is no -1 version of the SN54ALS541.

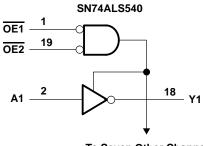
SN74ALS541 DB, DW, N, OR NS PACKAGE (TOP VIEW) OE1 [1 20] V _{CC} A1 [2 19] OE2 A2 [3 18] Y1 A3 [4 17] Y2 A4 [5 16] Y3 A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7 GND [10 11] Y8	JN/4ALJJ40		, 01. 1	NO LACINAGE
$\begin{array}{c cccc} OE1 & 1 & 20 \\ A1 & 2 & 19 \\ A2 & 3 & 18 \\ A3 & 4 & 17 \\ A3 & 4 & 17 \\ A4 & 5 & 16 \\ A5 & 6 & 15 \\ A6 & 7 & 14 \\ A6 & 7 & 14 \\ A7 & 8 & 13 \\ A8 & 9 & 12 \\ \end{array} \begin{array}{c} V_{CC} \\ V_{CC} \\ OE2 \\ $	SN74ALS541 [OB, DW,	N, O	R NS PACKAGE
A1 [2 19] OE2 A2 [3 18] Y1 A3 [4 17] Y2 A4 [5 16] Y3 A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7	(TOP VI	EW)	
A1 [2 19] OE2 A2 [3 18] Y1 A3 [4 17] Y2 A4 [5 16] Y3 A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7				
A2 [3 18] Y1 A3 [4 17] Y2 A4 [5 16] Y3 A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7	OE1	1	20	V _{CC}
A3 [4 17] Y2 A4 [5 16] Y3 A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7	A1 [2	19	OE2
A4 [5 16] Y3 A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7	A2 [3	18	Y1
A5 [6 15] Y4 A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7	A3 [4	17	Y2
A6 [7 14] Y5 A7 [8 13] Y6 A8 [9 12] Y7	A4 [5	16	Y3
A7 [] 8 13]] Y6 A8 [] 9 12]] Y7	A5 [6	15	Y4
A8 [] 9 12 [] Y7	A6 [7	14	Y5
	A7 [8	13	Y6
GND [10 11 Y8	A8 [9	12	Y7
	GND [10	11	Y8

SN54ALS541 ... FK PACKAGE (TOP VIEW)

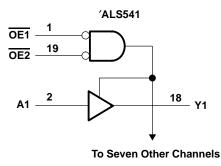
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.


SDAS025D - APRIL 1982 - REVISED MARCH 2002

Τ _Α	PAC	KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING							
			SN74ALS540N	SN74ALS540N							
	PDIP – N	Tube	SN74ALS540-1N	SN74ALS540-1N							
	FDIF - N	Tube	SN74ALS541N	SN74ALS541N							
			SN74ALS541-1N	SN74ALS541-1N							
0°C to 70°C		Tube	SN74ALS540DW	ALS540							
		Tape and reel	SN74ALS540DWR	AL5540							
		Tube	SN74ALS540-1DW	ALS540-1							
	SOIC – DW	Tube	SN74ALS541DW	ALS541							
		Tape and reel	SN74ALS541DWR	AL5541							
		Tube	SN74ALS541-1DW	ALS541-1							
		Tape and reel	SN74ALS541-1DWR	AL3041-1							
		Tape and reel	SN74ALS540NSR	ALS540							
	SOP – NS		SN74ALS540-1NSR	ALS540-1							
	30F - N3	Tape and reel	SN74ALS541NSR	ALS541							
			SN74ALS541-1NSR	ALS541-1							
	SSOP – DB	Tape and reel	SN74ALS541DBR	G541							
	330F - DB	Tape and reel	SN74ALS541-1DBR	G541-1							
–55°C to 125°C	CDIP – J	Tube	SNJ54ALS541J	SNJ54ALS541J							
-55°C to 125°C	LCCC – FK	Tube	SNJ54ALS541FK	SNJ54ALS541FK							


ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

logic diagrams (positive logic)

To Seven Other Channels

SDAS025D - APRIL 1982 - REVISED MARCH 2002

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC} Input voltage, V _I		
Voltage applied to a disabled 3-state output		
Package thermal impedance, θ_{JA} (see Note 1)	: DB package	70°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	
Storage temperature range, T _{stg}		–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		SN	54ALS5	41	SN SN	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX		
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage	2			2			V	
V_{IL}	Low-level input voltage			0.7			0.8	V	
ЮН	High-level output current			-12			-15	mA	
				12			24	mA	
IOL	Low-level output current						48†		
ТА	Operating free-air temperature	-55		125	0		70	°C	

 † Applies only to the -1 version and only if V_CC is between 4.75 V and 5.25 V

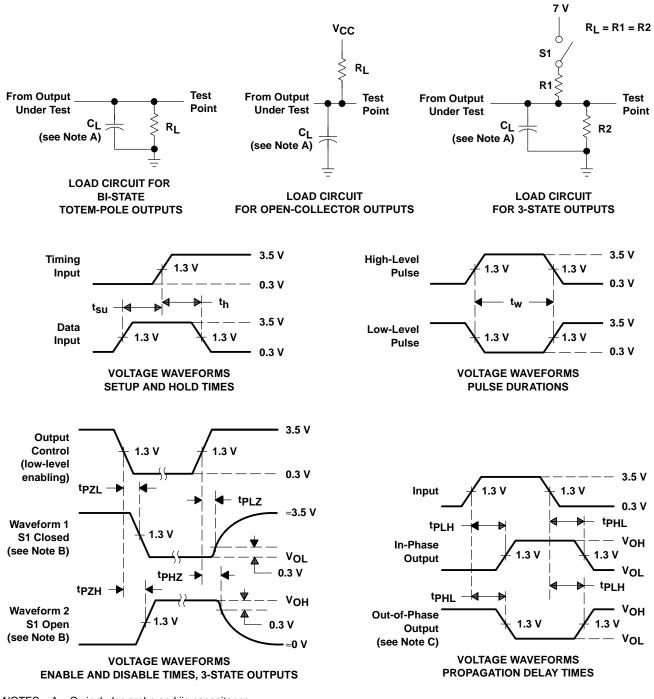
SDAS025D - APRIL 1982 - REVISED MARCH 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CO	ONDITIONS	SN	54ALS5	41	SN SN	UNIT			
				MIN	түр‡	MAX	MIN	TYP‡	MAX		
Vik		V _{CC} = 4.5 V,	lj = – 18 mA			-1.2			-1.2	V	
		V _{CC} = 4.5 V to 5.5 V,	$I_{OH} = -0.4 \text{ mA}$	V _{CC} –2	2		V _{CC} -2	2			
V			$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		V	
Vон		V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2						v	
			I _{OH} = -15 mA				2				
			I _{OL} = 12 mA		0.25	0.4		0.25	0.4		
V _{OL}		V _{CC} = 4.5 V	I _{OL} = 24 mA					0.35	0.5	V	
			I _{OL} = 48 mA [†]					0.35	0.5		
IOZH		V _{CC} = 5.5 V,	V _O = 2.7 V			20			20	μA	
I _{OZL}		V _{CC} = 5.5 V,	V _O = 0.4 V			-20			-20	μA	
Ιį		V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
IIН		V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μA	
۱ _{۱L}		V _{CC} = 5.5 V,	V _I = 0.4 V			-0.2			-0.1	mA	
lO§		V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA	
			Outputs high					5	10		
	SN74ALS540	V _{CC} = 5.5 V	Outputs low					13	22		
ICC 'ALS541			Outputs disabled					11	19		
			Outputs high		6	14		6	14	mA	
	'ALS541	V _{CC} = 5.5 V	Outputs low		15	25		15	25		
			Outputs disabled		13.5	32		13.5	22	22	

[†] Applies only to the -1 version and only if V_{CC} is between 4.75 V and 5.25 V [‡] All typical values are at V_{CC} = 5 V, T_A = 25°C. § The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, I_{OS}.

switching characteristics (see Figure 1)


PARAMETER	FROM (INPUT)	то (оитрит)		Cl R1 R2	CC = 4.5 _ = 50 pF l = 500 Ω 2 = 500 Ω A = MIN to	;, <u>2,</u> <u>2</u> ,			UNIT	
			SN54A	LS541	SN74A	LS540	SN74A	LS541		
			MIN	MAX	MIN	MAX	MIN	MAX		
^t PLH	<u> </u>	v	4	17	2	12	4	14	ns	
^t PHL	A	Ŷ	2	14	2	9	2	10	115	
^t PZH		V	5	18	5	15	5	15	ns	
^t PZL	ŌĒ	Y	8	28	8	20	8	20	113	
^t PHZ	OE	V	1	12	1	10	1	10		
^t PLZ	UE	Ŷ	2	14	2	12	2	12	ns	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS025D – APRIL 1982 – REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, t_f = t_f = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)				Qty	(2)	(6)	(3)		(4/5)	
5962-8960201RA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8960201RA SNJ54ALS541J	Samples
SN54ALS541J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54ALS541J	Samples
SN74ALS540-1N	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS540-1N	Samples
SN74ALS540-1NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS540-1	Samples
SN74ALS540DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS540	Samples
SN74ALS540DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS540	Samples
SN74ALS540N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS540N	Samples
SN74ALS540NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS540	Samples
SN74ALS540NSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS540	Samples
SN74ALS541-1DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541-1	Samples
SN74ALS541-1N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS541-1N	Samples
SN74ALS541-1NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS541-1N	Samples
SN74ALS541-1NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541-1	Samples
SN74ALS541-1NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541-1	Samples
SN74ALS541DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	G541	Samples
SN74ALS541DBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	G541	Samples
SN74ALS541DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541	Samples

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ALS541DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CUNIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541	Samples
SN74ALS541N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS541N	Samples
SN74ALS541NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541	Samples
SN74ALS541NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541	Samples
SN74ALS541NSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS541	Samples
SNJ54ALS541J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8960201RA SNJ54ALS541J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

24-Aug-2018

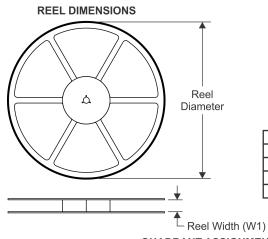
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

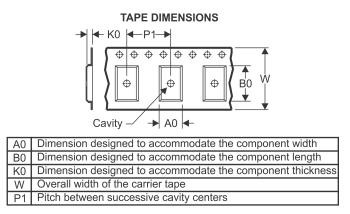
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ALS541, SN74ALS541 :

- Catalog: SN74ALS541
- Military: SN54ALS541

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

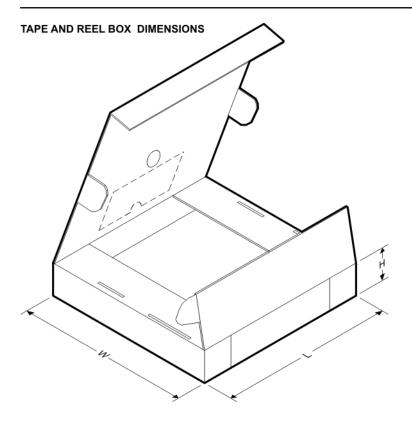

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALS540-1NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74ALS540DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ALS540NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74ALS541-1NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74ALS541DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74ALS541DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ALS541NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1

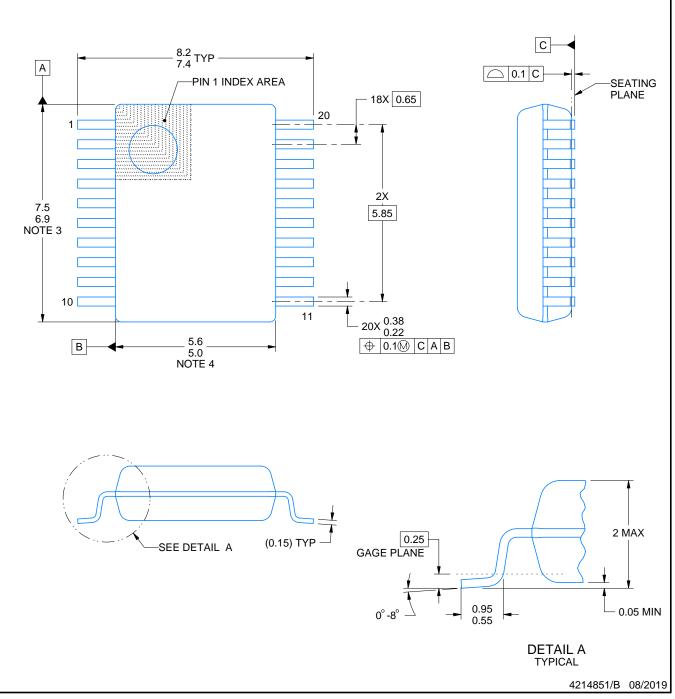
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

6-May-2017

*All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74ALS540-1NSR SO NS 20 2000 367.0 367.0 45.0 DW 45.0 SN74ALS540DWR SOIC 20 2000 367.0 367.0 SN74ALS540NSR SO NS 20 2000 367.0 367.0 45.0 SN74ALS541-1NSR SO NS 2000 367.0 367.0 45.0 20 SN74ALS541DBR SSOP DB 20 2000 367.0 367.0 38.0 SN74ALS541DWR SOIC DW 20 2000 367.0 367.0 45.0 SN74ALS541NSR SO NS 20 2000 367.0 367.0 45.0


DB0020A

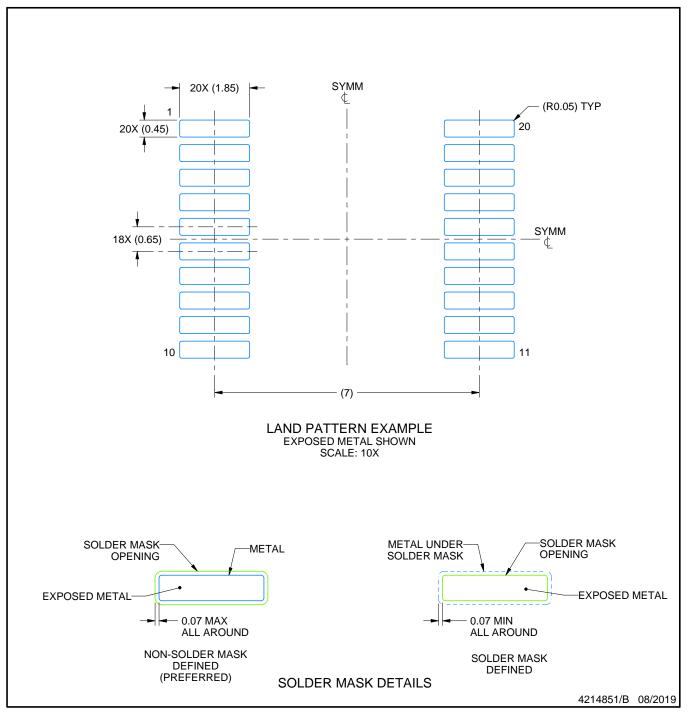
PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0020A

EXAMPLE BOARD LAYOUT

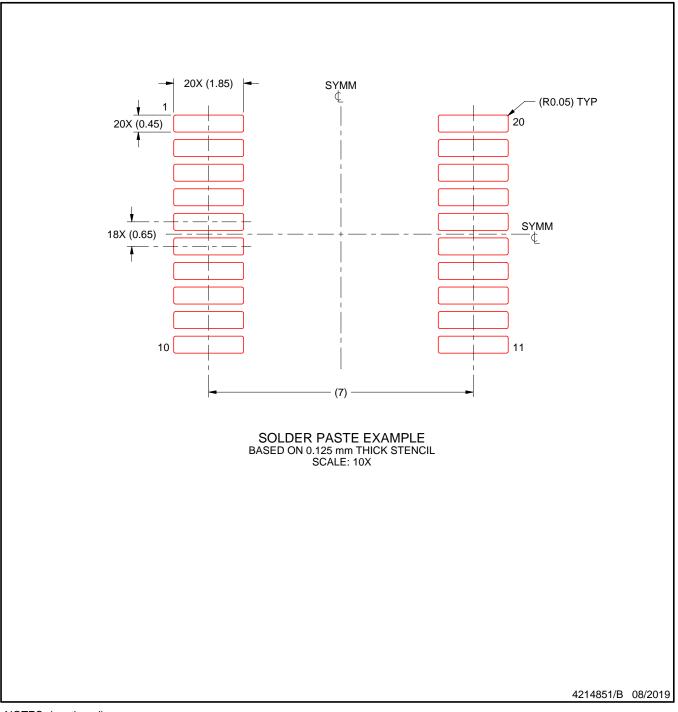
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0020A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

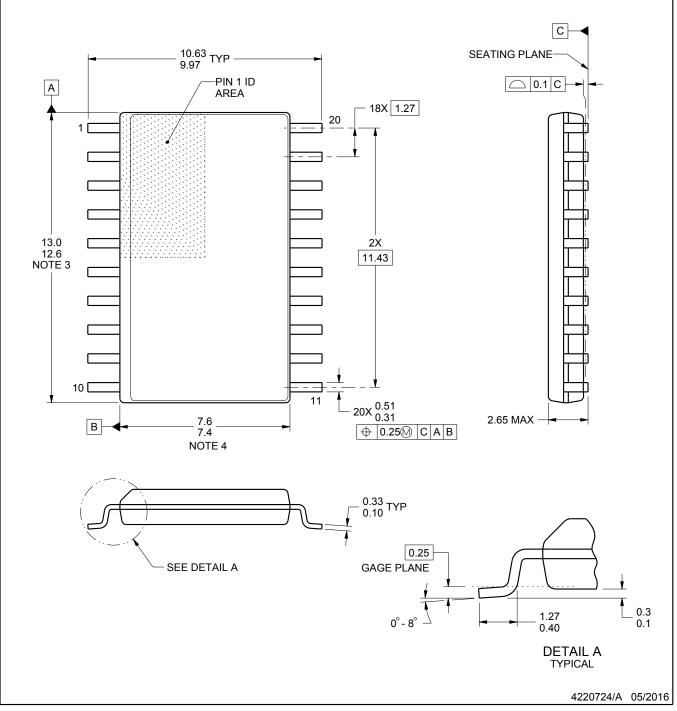
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


DW0020A

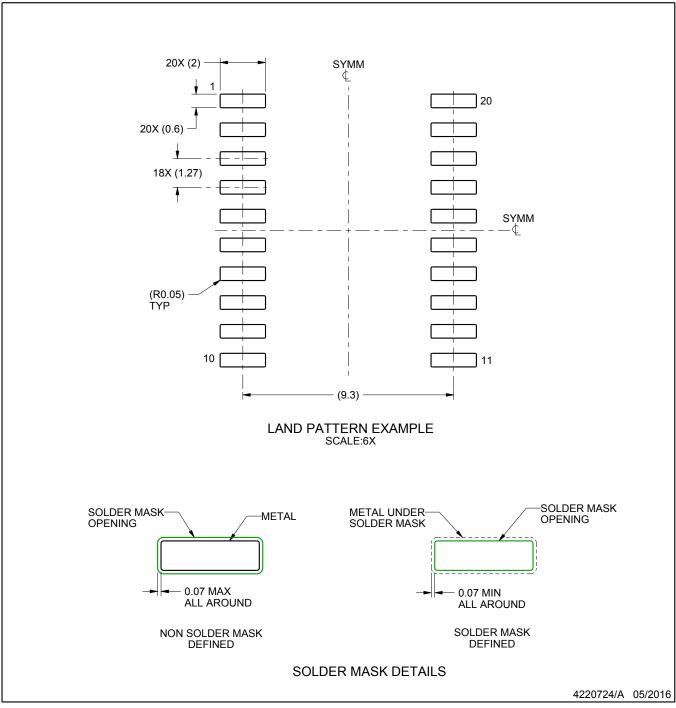
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



DW0020A

EXAMPLE BOARD LAYOUT

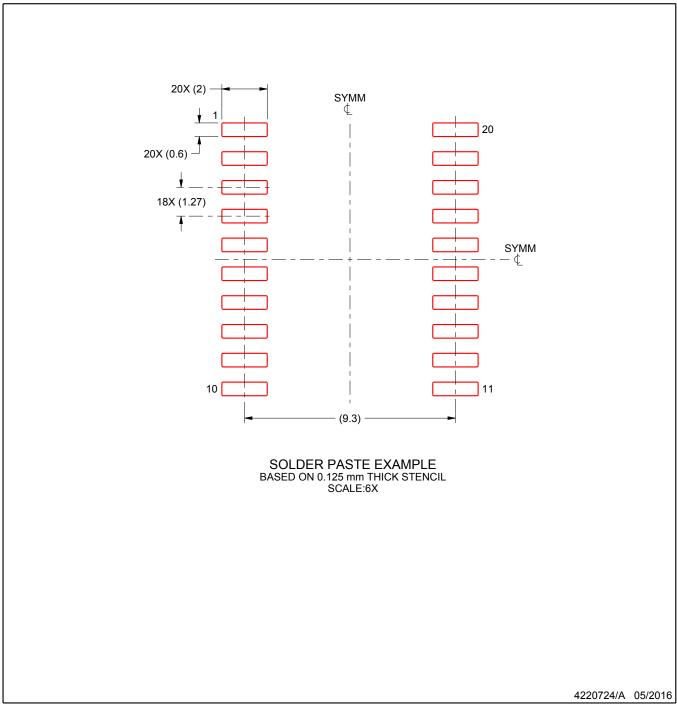
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated