

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

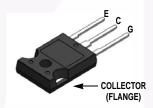
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

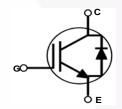
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

2015年3月

FGH30S130P 1300 V, 30 A 阳极短路 IGBT

特性


- 高速开关
- 低饱和电压: V_{CE(sat)} = 1.75 V @ I_C = 30 A
- 高输入阻抗
- 符合 RoHS 标准


应用

• 感应加热,微波炉

概述

Fairchild 阳极短路 IGBT采用先进的场截止沟槽和阳极短路技术, 可以为软开关应用提供卓越的导通和开关性能。该器件可并联配置,具有极佳的雪崩能力。该器件为感应加热和微波炉而设计。

绝对最大额定值 T_C = 25℃ 除非另有说明

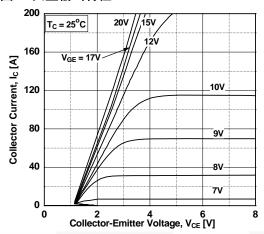
符号	描述		额定值	单位
V _{CES}	集电极 - 发射极之间电压		1300	V
V_{GES}	栅极一发射极间电压		±25	V
I _C	集电极电流	@ T _C = 25°C	60	Α
.0	集电极电流	@ T _C = 100°C	30	Α
I _{CM (1)}	集电极脉冲电流		90	Α
I _F	二极管正向连续电流	@ T _C = 25°C	60	A
I _F	二极管正向连续电流	@ T _C = 100°C	30	A
P_{D}	最大功耗	@ T _C = 25°C	500	W
. 0	最大功耗	@ T _C = 100°C	250	W
T _J	工作结温		-55 至 +175	°C
T _{stg}	存储温度范围		-55 至 +175	°C
TL	用于焊接的最大引脚温度, 距离外壳 1/8", 持续 5 秒		300	°C

热性能

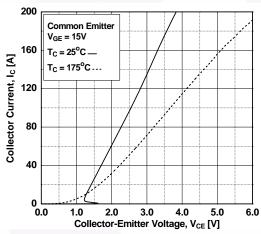
符号	参数	典型值	最大值	单位
$R_{\theta JC}(IGBT)$	结至外壳热阻最大值		0.3	°C/W
$R_{\theta JA}$	结至环境热阻最大值		40	°C/W

注: 1: 受限于最大结温

<u>封装标识与定购信息</u>


器件标识	器件	封装	卷尺寸	带宽	数量
FGH30S130P	FGH30S130P	TO-247	-	-	30

IGBT 电气特性 T_C = 25°C 除非另有说明


符号	参数	测试条件	最小值	典型值	最大值	单位
关断特性						
I _{CES}	集电极切断电流	V _{CE} = 1300, V _{GE} = 0 V	-	-	1	mA
I _{GES}	G-E 漏电流	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±500	nA
导通特性			·			
V _{GE(th)}	G-E 阈值电压	I_C = 30 mA, V_{CE} = V_{GE}	4.5	6.0	7.5	V
<u>OL(III)</u>	集电极一发射极间饱和电压	$I_C = 30 \text{ A, V}_{GE} = 15 \text{ V}$ $T_C = 25^{\circ}\text{C}$	-	1.75	2.3	V
V _{CE(sat)}		I _C = 30 A, V _{GE} = 15 V, T _C = 125°C	-	1.85	-	V
		I _C = 30 A, V _{GE} = 15 V, T _C = 175°C	-	1.9	-	V
V _{FM}	二极管正向电压	I _F = 30 A, T _C = 25°C	-	1.7	2.2	V
i ivi	— 155 H 3E 1 3 - C/3E	I _F = 30 A, T _C = 175°C	-	2.1	-	V
动态特性			1			
C _{ies}	输入电容		-	3345	-	pF
C _{oes}	输出电容	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ f = 1 MHz	-	75	-	pF
C _{res}	反向传输电容	1 - 1 1411 12	-	60	-	pF
开关特性			·			
t _{d(on)}	导通延迟时间		-	39	-	ns
t _r	上升时间		-	360	-	ns
t _{d(off)}	关断延迟时间	V _{CC} = 600 V, I _C = 30 A,	-	620	-	ns
t _f	下降时间	$R_G = 10 \Omega, V_{GE} = 15 V,$	-	160	210	ns
E _{on}	导通开关损耗	感性负载,T _C = 25°C	-	1.3	-	mJ
E _{off}	关断开关损耗		- /	1.22	1.6	mJ
E _{ts}	总开关损耗		-	2.52	-	mJ
t _{d(on)}	导通延迟时间		-	38	-	ns
t _r	上升时间		-	375	-	ns
t _{d(off)}	关断延迟时间	V _{CC} = 600 V, I _C = 30 A,	-	635	-	ns
t _f	下降时间	$R_G = 10 \Omega, V_{GE} = 15 V,$	-	270	- /	ns
E _{on}	导通开关损耗	感性负载, TC =175°C	-	1.59	-	mJ
E _{off}	关断开关损耗		- ,	1.78	-	mJ
E _{ts}	总开关损耗		_	3.37	-	mJ
Qg	总栅极电荷		-	372.3	-	nC
Q _{ge}	栅极一发射极间电荷	V _{CE} = 600 V, I _C = 30 A, V _{GE} = 15 V	-	18.7	-	nC
Q _{gc}	栅极一集电极间电荷	VGE - 13 V	-	156.2	-	nC

典型性能特征

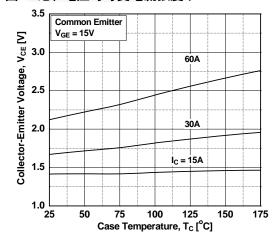

图 1. 典型输出特性

图 3. 典型饱和电压

图 5. 饱和电压与可变电流强度下

图 2. 典型输出特性

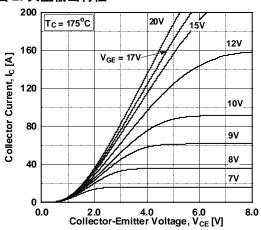
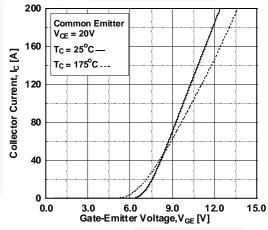
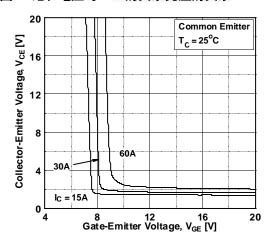




图 4. 传输特性

图 6. 饱和电压与 VGE 的关系壳温的关系

典型性能特征

图 7. 饱和电压与 VGE 的关系

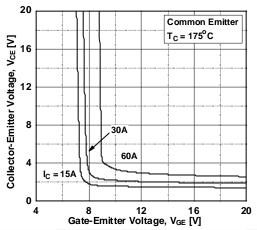


图 9. 栅极电荷特性

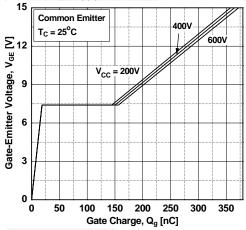


图 11. 导通特性与栅极电阻的关系

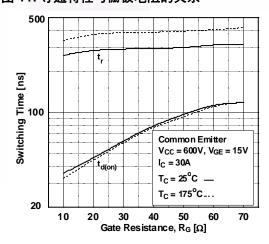


图 8. 电容特性

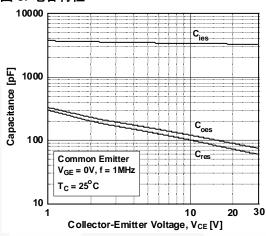


图 10. SOA 特性

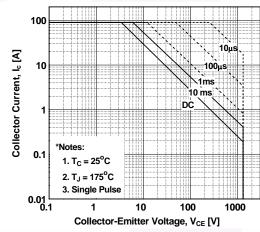
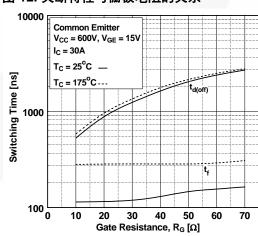
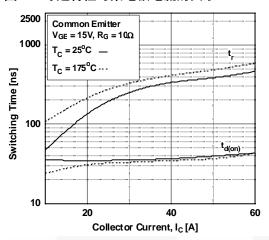




图 12. 关断特性与栅极电阻的关系

典型性能特征

图 13. 导通特性与集电极电流的关系

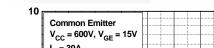
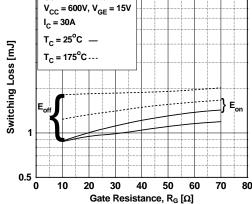
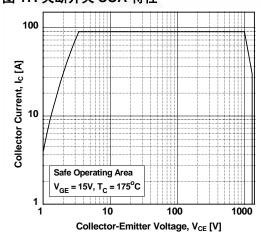




图 15. 开关损耗与栅极电阻的关系

图 17. 关断开关 SOA 特性

图 14. 关断特性与集电极电流的关系

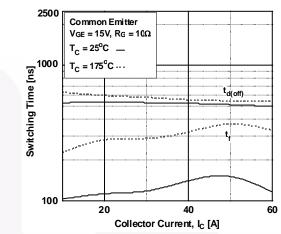
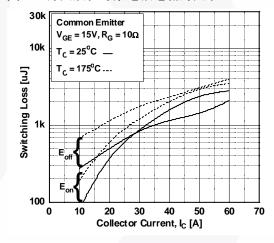
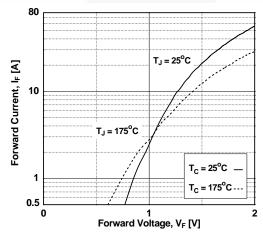
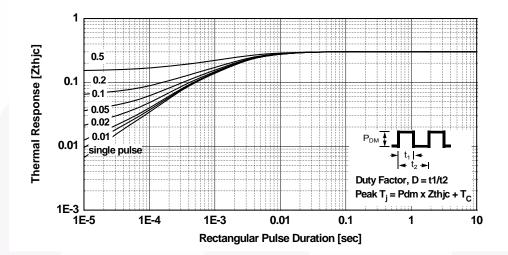


图 16. 开关损耗与集电极电流的关系

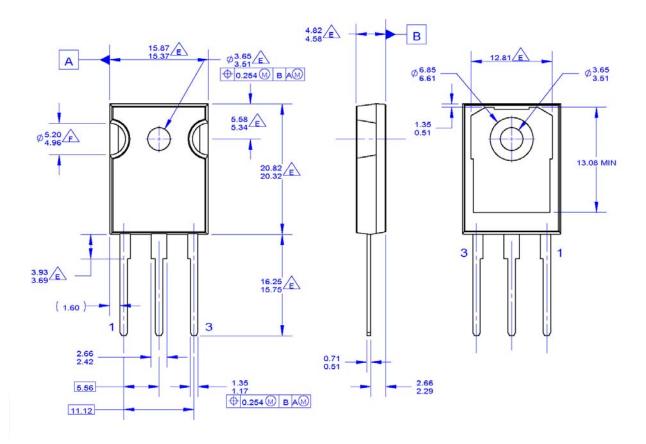

图 18. 正向特性

图 19. IGBT 的瞬态热阻抗

机械尺寸

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994
- E DOES NOT COMPLY JEDEC STANDARD VALUE
- NOTCH MAY BE SQUARE
- G. DRAWING FILENAME: MKT-TO247A03_REV03

图 20. TO-247, 模塑, 3 引脚, JEDEC 变量 AB

封装图纸是作为一项服务提供给考虑飞兆半导体元件的客户的。图纸可能会在没有任何通知的情况下做出一些改动。请注意图纸上的版本或日期,如有疑问,请联系飞兆半导体代表核实或获得最新版本。封装规格并不扩大飞兆半导体全球范围内的条款与条件,尤其是其中涉及飞兆半导体产品保修的部分。

随时访问飞兆半导体在线封装网页,可以获取最新的封装图纸:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TO247-003

尺寸单位为毫米

商标

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP®*
BitSiC™
Build it Now™
CorePLUS™

CorePOWER™

CROSSVOLT™

CIL™
Current Transfer Logic™
DEUXPEED®

Dual Cool™ EcoSPARK® EfficentMax™

Fairchild®

ESBC™

Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]

FAST[®]
FastvCore™
FETBench™
FPS™

F-PFS™ FRFET®

Global Power ResourceSM

GreenBridge™ Green FPS™

Green FPS™ e-Series™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR

Marking Small Speakers Sound Louder

and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™

MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET[®]

SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyPOPTO™
TinyPOWH™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®**
µSerDes™

SerDes"
UHC®

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy.Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications matchange in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications.Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.The datasheet is for reference information only.	

Rev. 168

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative