

Voltage mode SEPIC evaluation kit

TLD5099EP

About this document

Product description

The TLD5099EP is an AEC qualified DC-DC boost controller, especially designed to drive LEDs.

- Built in diagnosis and protection features
- Pulse width modulator to implement a dimming function with reduced color shifting
- Spread spectrum modulator to improve the EMI performance

Scope and purpose

Scope of this user manual is to provide instructions on the use of TLD5099EP voltage-mode SEPIC evaluation board.

Intended audience

This document is intended for engineers who need to perform measurements and check performance with TLD5099EP voltage-mode SEPIC evaluation board.

Table of contents

	About this document	1
	Table of contents	1
1	Description	2
2	Quick start procedure	4
3	Auto-enable configuration	5
4	Schematics	6
5	PCB layout	8
6	Bill of material	9
7	Efficiency measurements	11
8	Maximizing efficiency	12
9	Minimizing EM emissions	13
	Revision history	14
	Disclaimer	15

1 Description

1 Description

The Evaluation board for medium power application with TLD5099EP configured in voltage-mode SEPIC topology will be explained. It can be implemented as a DC-DC power supply with constant voltage output.

The default configuration of the board is voltage-mode SEPIC topology without any additional features enabled. In this configuration, it can deliver up to 12 W to the load with an efficiency above 85%. Auxiliary circuits which protect the DC-DC and the load during short to ground, forcing the current to zero, are not present. The short to ground current is limited to a few amps by the embedded current control loop.

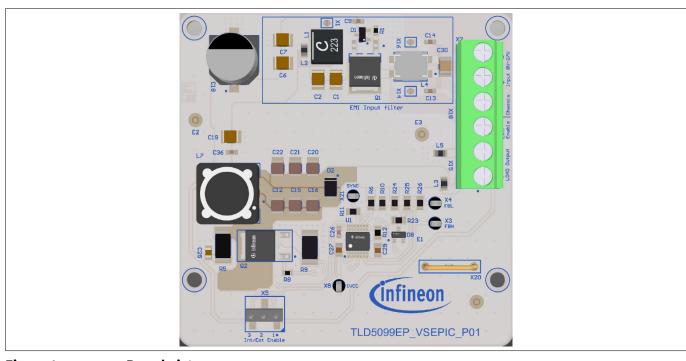


Figure 1 Board picture

1 Description

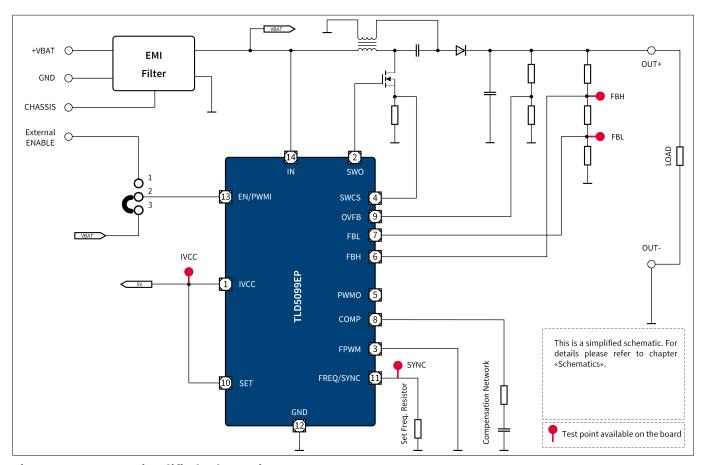


Figure 2 Simplified schematic

Table 1 Performance summary

Parameter	Conditions	Value
Input supply voltage	Parameter degradation below 6.5 V	8 V to 27 V
		Down to 6.5 V for less than 2 s
Maximum output current	Resistive load	1 A
Switching frequency	V _{IN} = 13.2 V; spread spectrum "on"	400 kHz
Efficiency	Measured with a 12 Ω power resistor as load	> 85%
Output voltage range	Output voltage related to ground	12 V
Output overvoltage protection	Output voltage related to ground	16 V

infineon

2 Quick start procedure

2 Quick start procedure

The default configuration of the board has all additional features disabled. Jumper is placed in position 1-2. In this configuration, ENABLE signal must be applied on X18 (max. 45 V). If another output voltage is required, change the values of the voltage divider resistors R24, R25, and R26 according to the following equation:

$$\frac{V_{OUT}}{R24 + R25 + R26} \bullet R25 = V_{REF} \tag{1}$$

where $V_{\rm OUT}$ is the desired output voltage and $V_{\rm REF}$ = 300 mV is the feedback reference voltage. Correct device functioning is achieved if voltages $V_{\rm FBH}$ and $V_{\rm FBL}$ on both terminals of R25 are greater than 3 V with respect to ground.

Attention: On this board V_{OUT} is set to 12 V by default. Increasing V_{OUT} over the default level may damage some components irreversibly.

The default configuration is depicted below:

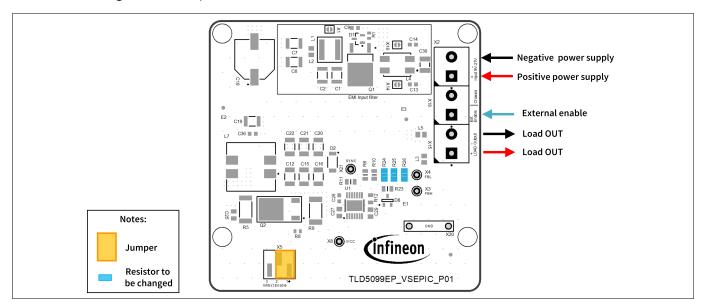


Figure 3 Default configuration of the board

3 Auto-enable configuration

3 Auto-enable configuration

By placing the jumper X5 on position 2-3, the device starts without any external enable signal because pin EN (ENABLE) is connected directly to the positive rail (see Schematics for details).

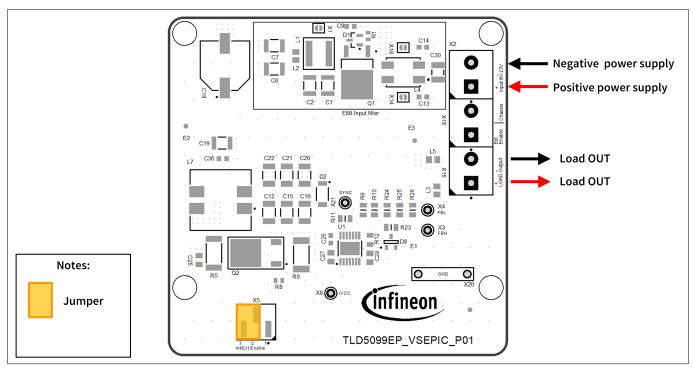


Figure 4 Auto-enable configuration

4 Schematics

Schematics 4



Figure 5 **Input filter**

infineon

4 Schematics

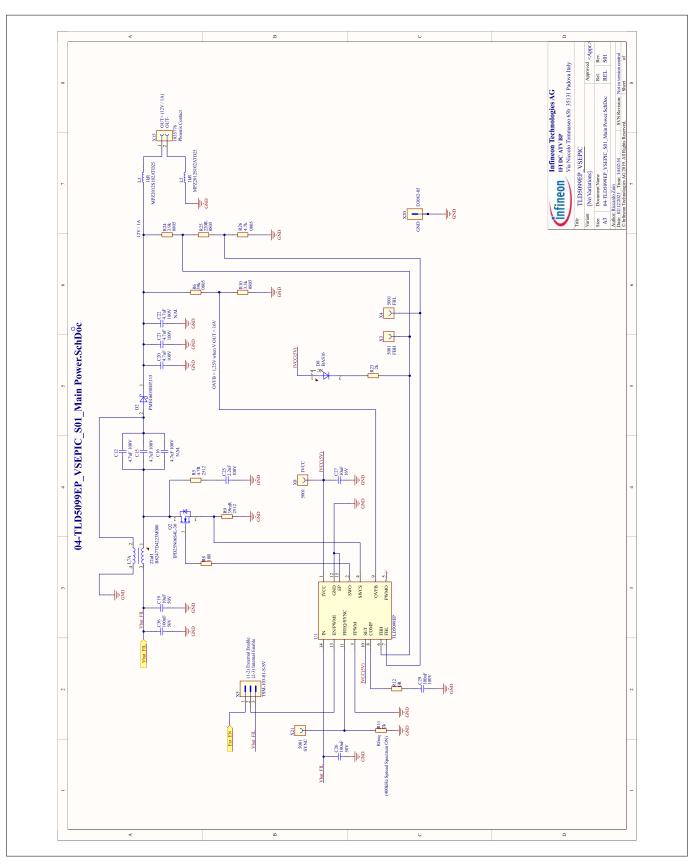


Figure 6 Main power

5 PCB layout

PCB layout 5

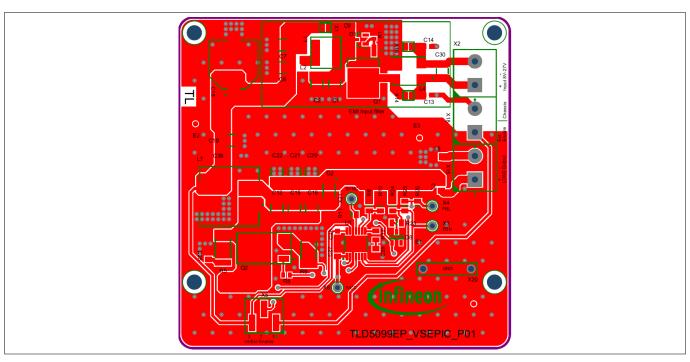


Figure 7 **PCB** layout top view

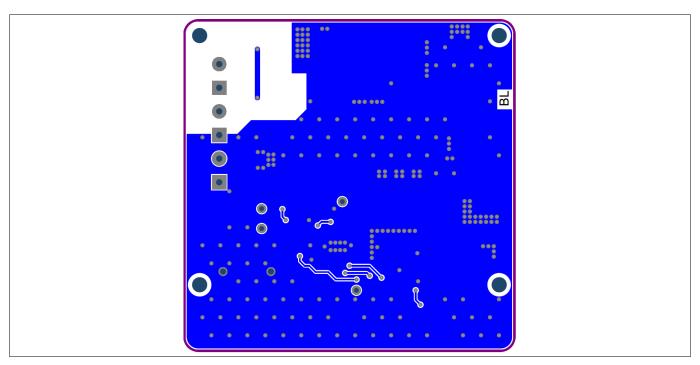
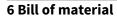



Figure 8 **PCB** layout bottom view

6 Bill of material

Table 2 Bill of materials

Designator	Value	Manufacturer	Manufacturer order number
C1, C2, C6, C7, C19	10 uF	Murata	GCM32EC71H106KA03
C9, C26, C36	100 nF	AVX	06035C104K4Z2A
C12, C15, C20, C21	4.7 uF	TDK	CGA6M3X7S2A475K200AE
C13, C14	470 pF	Murata	GCM1885C1H471JA16
C16, C22	4.7 uF	TDK	CGA6M3X7S2A475K200AE
C18	220 uF	Panasonic	EEEFK1H221P
C25	2.2 nF	Murata	GCM2165C2A222FA16
C27	10 uF	TDK	CGA4J1X7S1C106K125AC
C29	100 nF	TDK	CGA4J2X7R2A104M125AE
C30	4.7 uF	Kemet	C1210C475K5RACAUTO
D1	10 V	ON Semiconductor	BZX84C10LT1G
D2	PMEG6030EP,115	Nexperia	PMEG6030EP,115
D8	BAS16	Infineon Technologies	BAS16
L1	10 uH	Coilcraft	XAL6060-103MEB
L2	100 Ω @ 100 MHz	TDK	MPZ2012S101ATD25
_3, L5	1 kΩ @ 100 MHz	TDK	MPZ2012S102ATD25
_4	-	TDK	ACM70V-701-2PL-TL00
_7	22 uH	TDK	B82477D4223M000
Q1	IPD90P04P4L-04	Infineon Technologies	IPD90P04P4L-04
Q2	IPD25N06S4L-30	Infineon Technologies	IPD25N06S4L-30
R1	10 kΩ	Vishay	CRCW060310K0FK
₹5	4.7 Ω	Vishay	CRCW25124R70FK
R6	39 kΩ	Vishay	CRCW080539K0FK
₹8	10 Ω	Vishay	CRCW060310R0FK
R9	39 mΩ	Vishay	WSL2512R0390FEA
R10	3.3 kΩ	Vishay	CRCW08053K30FK
R11, R23	2 kΩ	Vishay	CRCW08052K00FK
R12	0 Ω	Yageo	AC0805JR-070RL
R24	3.9 kΩ	Vishay	CRCW08053K90FK
R25	220 Ω	Vishay	CRCW0805220RFK
R26	4.7 kΩ	Vishay	CRCW08054K70FK
J1	TLD5099EP	Infineon Technologies	TLD5099EP
<1, X14, X16	Solder Jumper 2 Pins	-	Solder Jumper 2 Pins
(2, X15, X18	1935776	Phoenix Contact	1935776
(3, X4, X8, X21	5001	Keystone	5001

6 Bill of material

Table 2 (continued) Bill of materials

Designator	Value	Manufacturer	Manufacturer order number
X5	TSM-103-01-S-SV	Samtec	TSM-103-01-S-SV
X20	D3082-05	Harwin	D3082-05

TLD5099EP

7 Efficiency measurements

Efficiency measurements 7

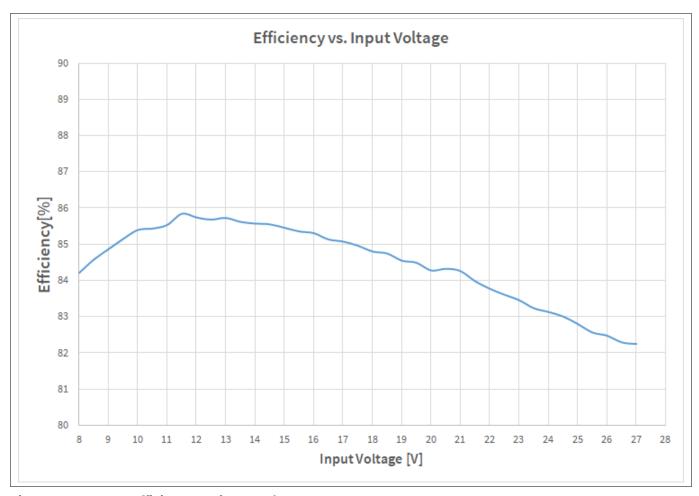


Figure 9 Efficiency vs. input voltage

This efficiency performance has been obtained with:

Table 3 Parameters influencing efficiency

Output load	12 Ω power resistor
EMI filter	Totally bypassed by closing the jumpers X1, X14 and X16

Efficiency performances can be increased, refer to Maximizing efficiency.

8 Maximizing efficiency

8 Maximizing efficiency

This evaluation board has been designed to reach a fair compromise between efficiency performance and EM emissions compliance.

Nevertheless, if the maximum efficiency is needed, the following actions are suggested:

- 1. Remove the snubber circuit consisting of R5 and C25 or choose a lower value for the capacitor C25 (for example 1 nF)
- 2. Bypass the whole EMI filter, by bridging the jumpers X1, X14 and X16
- **3.** Bypass the output ferrite beads L3 and L5
- **4.** Replace the main inductor L7 with one that boasts a lower parasitic DC resistance, for example
 - TDK model B82477C6223M603
 - TDK model B82477D6223M603
- **5.** Bypass gate resistor R8

9 Minimizing EM emissions

9 Minimizing EM emissions

This evaluation board has been designed to reach a fair compromise between efficiency performance and EM emissions compliance. Furthermore, this evaluation board can fulfill the class V of the CISPR25 in conducted emissions from 150 kHz to 108 MHz.

Nevertheless, if the minimum EM emission is required, the following actions should be considered:

- 1. Choose a higher value for the capacitor C25 (for example 2.7 nF or 3.3 nF)
- 2. Include the whole EMI filter by removing bridges from the jumpers X1, X14 and X16
- **3.** Replace the 10 Ω resistor R8 with a higher value such as 22 Ω or 33 Ω
- **4.** With a short piece of wire connect the CHASSIS TERMINAL to the test ground plane as close as possible to where the board is placed

Voltage mode SEPIC evaluation kit

TLD5099EP

Revision history

Revision history

Table 4 **Revision history**

Document version	Date of release	Description of changes
Rev.2.00	2022-02-04	 Second release related to evalboard S01_P01 Editorial changes and rephrasing for clarity Updated all figures Rearranged connectors on evalboard Added ground bar on evalboard
Rev.1.00	2020-01-29	First release related to evalboard S00_P00

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-02-04 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-pph1578654908400

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.