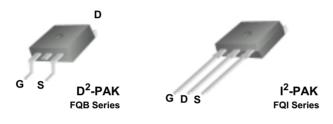
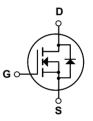


April 2000

FQB34N20 / FQI34N20

200V N-Channel MOSFET


General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply, DC-AC converters for uninterrupted power supply, motor control.

Features

- 31A, 200V, $R_{DS(on)}$ = 0.075 Ω @V_{GS} = 10 V Low gate charge (typical 60 nC)
- Low Crss (typical 55 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQB34N20 / FQI34N20	Units
V _{DSS}	Drain-Source Voltage		200	V
I _D	Drain Current - Continuous (T _C = 25°C)		31	Α
	- Continuous (T _C = 100°C)	20	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	124	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	640	mJ
I _{AR}	Avalanche Current	(Note 1)	31	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	18	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
P_{D}	Power Dissipation (T _A = 25°C) *		3.13	W
_	Power Dissipation (T _C = 25°C)		180	W
	- Derate above 25°C		1.43	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _I	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C
'L			300	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	200			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.2		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V			1	μА
		V _{DS} = 160 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 15.5 A		0.06	0.075	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 15.5 A (Note 4)		25		S
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		430 55	560 70	pF pF
Orss	Reverse Transfer Capacitance			55	70	рг
	ing Characteristics			1		
1	Turn-On Delay Time			4.0	00	
^L d(on)	=,	$V_{DD} = 100 \text{ V}, I_D = 34 \text{ A},$		40	90	ns
	Turn-On Rise Time	V_{DD} = 100 V, I_{D} = 34 A, R_{G} = 25 Ω		280	570	ns ns
t _r	•	$R_G = 25 \Omega$		-		
t _r t _{d(off)} t _f	Turn-On Rise Time			280	570	ns
t_r $t_{d(off)}$ t_f Q_g	Turn-On Rise Time Turn-Off Delay Time	$R_G = 25 \Omega$		280 125	570 260	ns ns
t_r $t_{d(off)}$ t_f Q_g	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 34 \text{ A}, V_{GS} = 10 \text{ V}$		280 125 115	570 260 240	ns ns ns
$\begin{array}{c} t_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline Q_g \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \end{array}$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	R_G = 25 Ω (Note 4, 5) V_{DS} = 160 V, I_D = 34 A,		280 125 115 60	570 260 240 78	ns ns ns
t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 34 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	280 125 115 60 17	570 260 240 78	ns ns ns nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 160 \ V, I_{D} = 34 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5) $N_{CS} = 10 \ V$ (Note 4, 5)	 	280 125 115 60 17	570 260 240 78	ns ns ns nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	R_G = 25 Ω (Note 4, 5) V_{DS} = 160 V, I_D = 34 A, V_{GS} = 10 V (Note 4, 5) and Maximum Ratings ode Forward Current	 	280 125 115 60 17 27	570 260 240 78 	ns ns ns nC nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S I_S	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	R_G = 25 Ω (Note 4, 5) V_{DS} = 160 V, I_D = 34 A, V_{GS} = 10 V (Note 4, 5) and Maximum Ratings ode Forward Current	 	280 125 115 60 17 27	570 260 240 78 	ns ns ns nC nC
t_r $t_{d(off)}$ t_{f} Q_g Q_{gs} Q_{gd} Drain-S	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Faxing Faxing Source Diode Faxing F	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 34 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 4, 5) and Maximum Ratings the Forward Current Forward Current		280 125 115 60 17 27	570 260 240 78 31 124	ns ns nC nC nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 1.0mH, I_{AS} = 31A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 34A, di/dt \leq 300A/μs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300μs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Typical Characteristics

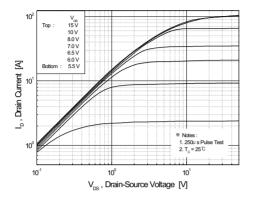


Figure 1. On-Region Characteristics

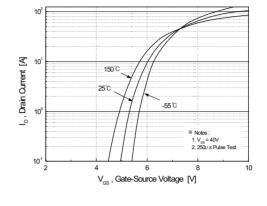


Figure 2. Transfer Characteristics

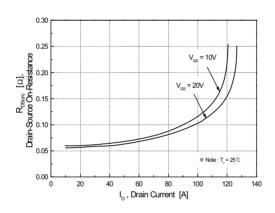


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

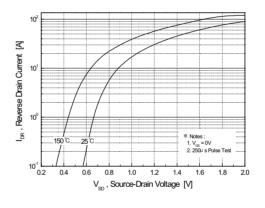


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

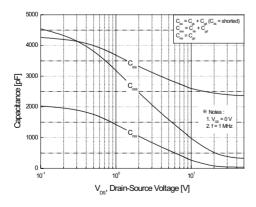


Figure 5. Capacitance Characteristics

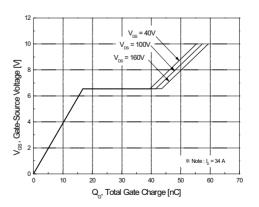


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

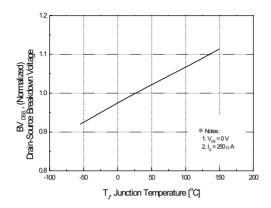


Figure 7. Breakdown Voltage Variation vs. Temperature

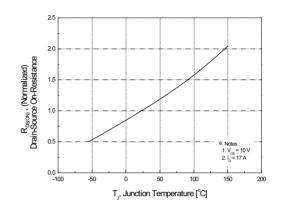


Figure 8. On-Resistance Variation vs. Temperature

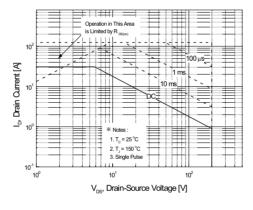


Figure 9. Maximum Safe Operating Area

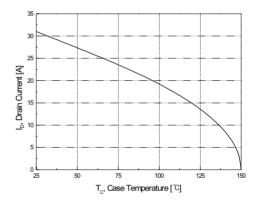


Figure 10. Maximum Drain Current vs. Case Temperature

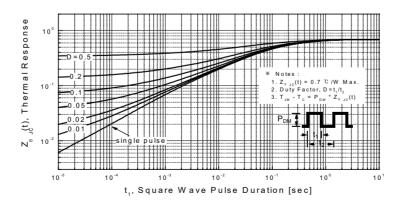
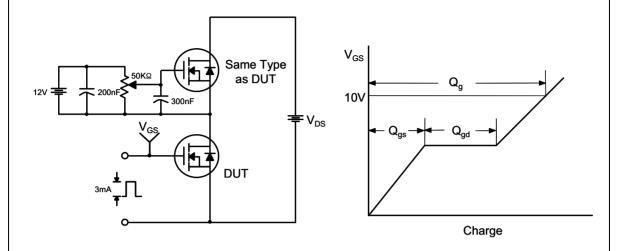
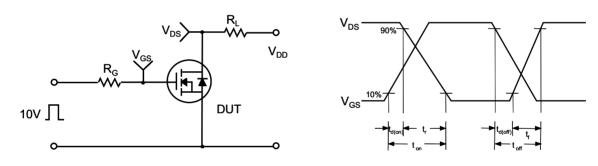
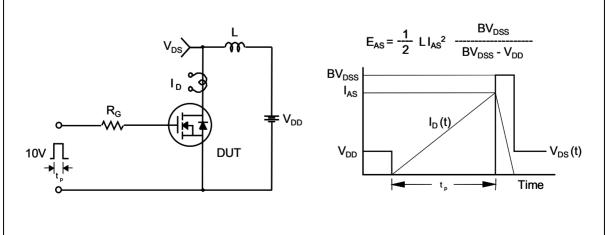
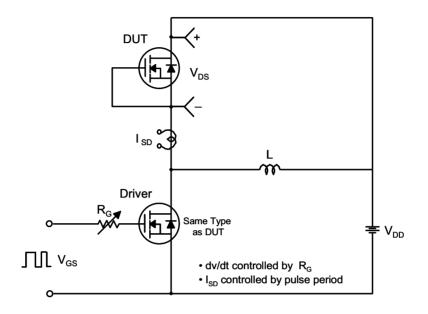
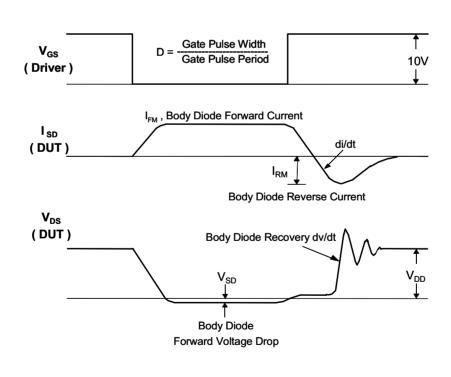
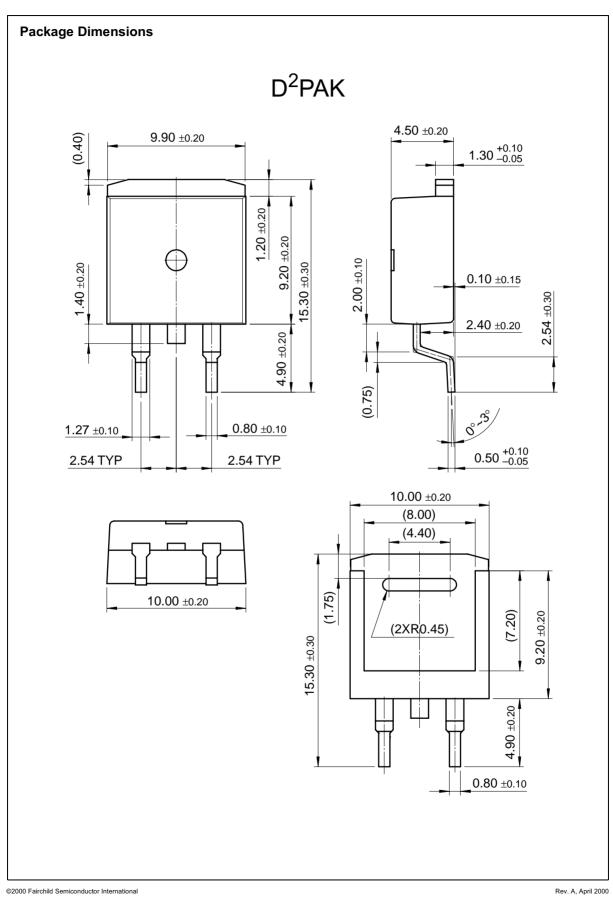




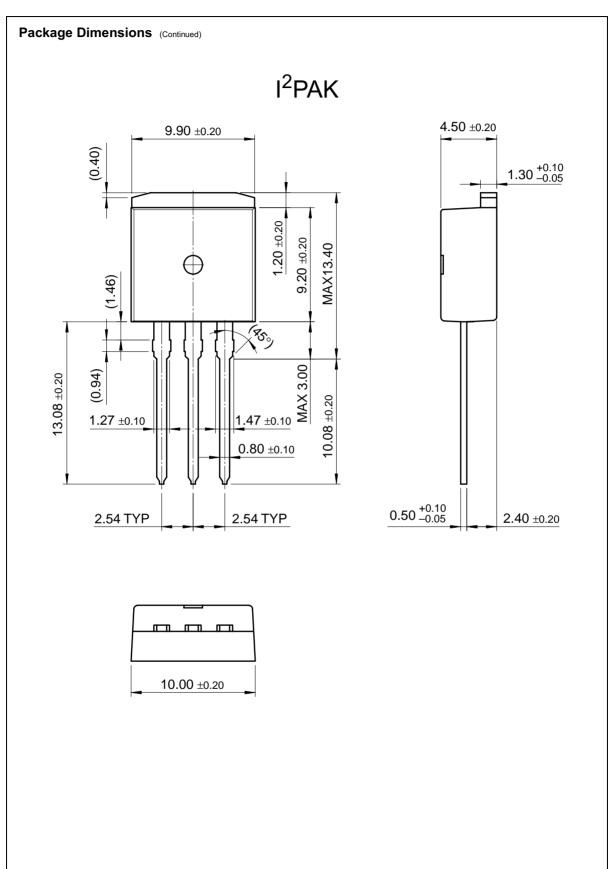
Figure 11. Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms


Peak Diode Recovery dv/dt Test Circuit & Waveforms

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FASTr™ QFET™ VCX™

Bottomless™ GlobalOptoisolator™ QS™

CoolFET™ GTO™ QT Optoelectronics™

HiSeC™ CROSSVOLT™ Quiet Series™ DOME™ ISOPLANAR™ SuperSOT™-3 E²CMOSTM MICROWIRE™ SuperSOT™-6 OPTOLOGIC™ EnSigna™ SuperSOT™-8 FACT™ **OPTOPLANAR™** SyncFET™ POP™ FACT Quiet Series™ TinyLogic™

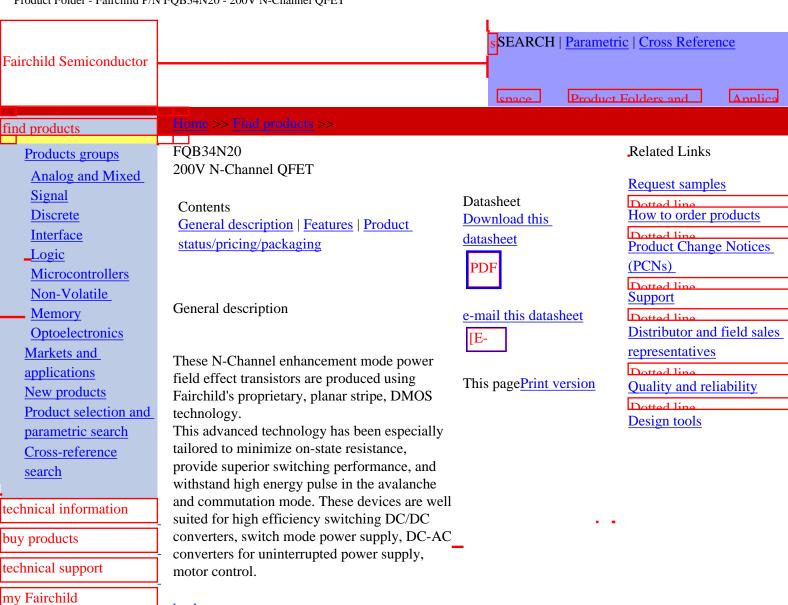
FACT Quiet Series *** FOF TrinyLogic FAST® PowerTrench® UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:


1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

back to top

Features

company

- 31A, 200V, $R_{DS(on)} = 0.075\Omega$ @ $V_{GS} = 10 \text{ V}$
- Low gate charge (typical 60 nC)
- Low Crss (typical 55 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQB34N20TM	Full Production	\$1.63	TO-263(D2PAK)	2	TAPE REEL

Product Folder - Fairchild P/N	FQB34N20 - 200V N-Channel QFET
	* 1,000 piece Budgetary Pricing
	back to top
	Home Find products Technical information Buy products Support Company Contact us Site index Privacy policy
	© Copyright 2002 Fairchild Semiconductor