

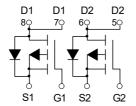
Product Specification

XBLW AO4805

P-Channel Enhancement Mode MOSFET

Description

The AO4805 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. It can be used in a wide variety of applications.


General Features

- \rightarrow VDS = -30V, ID = -8.5A
- > RDS(ON) < 18m @ V GS=-10V
- > RDS(ON) < 28m @ V GS=-4.5V

Application

- > PWM application
- Load switch

Dual P-Channel MOSFET

Package Marking and Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW AO4805	SOP-8	AO4805	Tape	3000Pcs/Reel

Absolute Maximum Ratings (TA=25°C unless otherwise noted)

Symbol	Parameter	Limit	Unit
V _{DS}	Drain-Source Voltage	-30	V
V _G s	Gate-Source Voltage	±20	V
l _D	Drain Current-Continuous	-8.5	А
I DM	Drain Current-Pulsed (Note 1)	-26	А
P _D	Maximum Power Dissipation	1.5	W
T _J ,T _{STG}	Operating Junction and Storage Temperature Range	-55 To 150	$^{\circ}$ C
Reja	Thermal Resistance,Junction-to-Ambient (Note 2)	85	°C/W

Electrical Characteristics (TJ=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =-250 u A	-30			V	
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.022		V/°C	
D	Static Drain Source On Besistance?	V _{GS} =-10V , I _D =-6A		14	18	m0	
R _{DS(ON)}	rain-Source Breakdown Voltage V _{GS} =0V , I _D =-250uA Reference to 25°C , I _D =-1mA tatic Drain-Source On-Resistance ² ate Threshold Voltage GS(th) Temperature Coefficient rain-Source Leakage Current orward Transconductance tate Resistance otal Gate Charge (-4.5V) ate-Drain Charge urn-On Delay Time ise Time uput Capacitance V _{GS} =0V , I _D =-250uA V _{GS} =-10V , I _D =-4A V _{GS} =-10V , I _D =-4A V _{GS} =-24V , V _{GS} =0V , T _J =25°C V _{DS} =-24V , V _{GS} =0V , T _J =25°C V _{DS} =-24V , V _{GS} =0V , T _J =55°C V _{DS} =-25°C V _{DS} =-25°C V _{DS} =-24V , V _{DS} =0V , T _J =55°C V _{DS} =-25°C V _{DS} =		22	28	mt2		
V _{GS(th)}	Gate Threshold Voltage	VV I 2500A	-1.0		-2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID250UA		4.6		mV/°C	
1	Drain Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1		
IDSS	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	V V/°C mΩ V	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA	
gfs	Forward Transconductance	V_{DS} =-5 V , I_{D} =-6 A		17		S	
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		13		Ω	
Qg	Total Gate Charge (-4.5V)			12.6			
Q_{gs}	Gate-Source Charge	V_{DS} =-15V , V_{GS} =-4.5V , I_{D} =-6A		4.8		nC	
Q_{gd}	Gate-Drain Charge			4.8			
T _{d(on)}	Turn-On Delay Time			4.6			
Tr	Rise Time	V_{DD} =-15 V , V_{GS} =-10 V , R_{G} =3.3 Ω ,		14.8		20	
$T_{d(off)}$	Turn-Off Delay Time	I _D =-6A		41		IIS	
T _f	Fall Time			19.6			
Ciss	Input Capacitance			1345			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		194		pF	
C _{rss}	Reverse Transfer Capacitance		-	158			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	\/-=\/-=0\/			-6.5	Α
I _{SM}	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			-26	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V
t _{rr}	Reverse Recovery Time			16.3		nS
Qrr	Reverse Recovery Charge	lF=-6A,dl/dt=100A/µs,Tյ=25°C		5.9		nC

Note

1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$

4.The power dissipation is limited by 150°C junction temperature

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V,L=0.1mH,I_{AS}=-38A

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

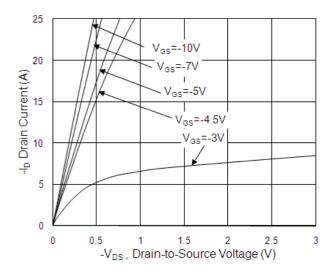


Fig.1 Typical Output Characteristics

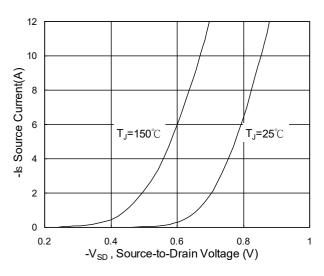


Fig.3 Forward Characteristics of Reverse

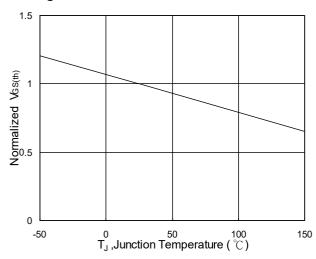


Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

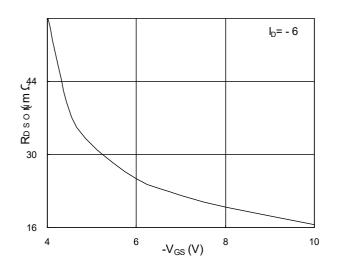


Fig.2 On-Resistance v.s Gate-Source

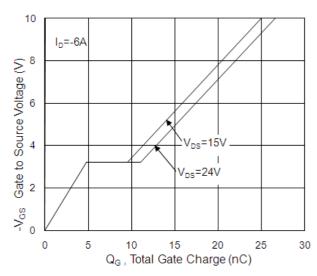


Fig.4 Gate-Charge Characteristics

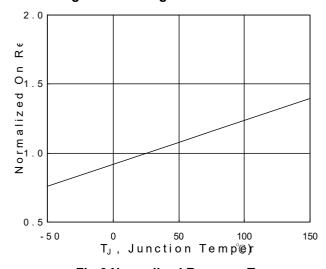
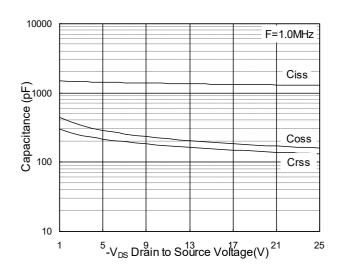



Fig.6 Normalized R_{DSON} vs. T_J

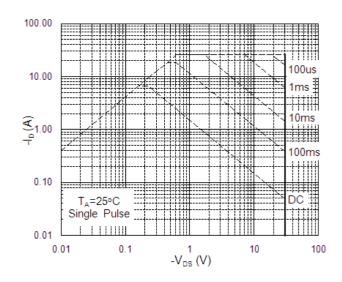


Fig.7 Capacitance

Fig.8 Safe Operating Area

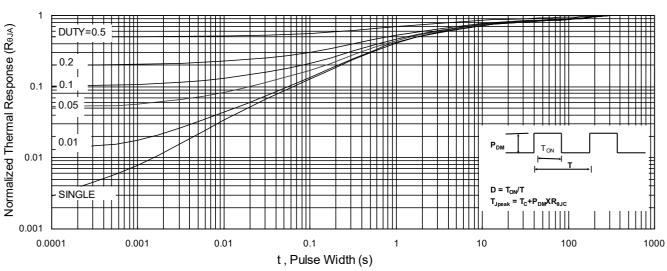


Fig.9 Normalized Maximum Transient Thermal Impedance

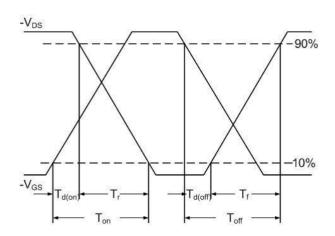
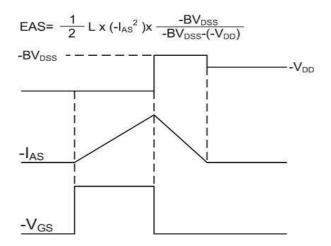
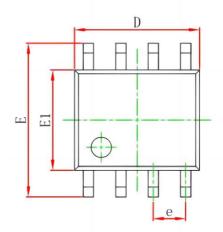
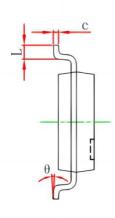
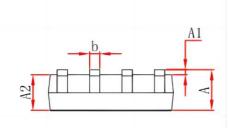


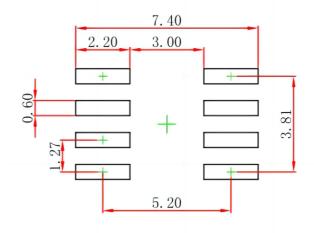
Fig.10 Switching Time Waveform


Fig.11 Unclamped Inductive Switching Waveform



Package Outline Dimensions


SOP-8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
e	1.270 (BSC)		0.050	(BSC)
E	5.800	6. 200	0. 228	0. 244
E1	3.800	4.000	0.150	0. 157
L	0.400	1. 270	0.016	0.050
θ	0 °	8°	0°	8°

Note:

- 1.Controlling dimension: In millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.