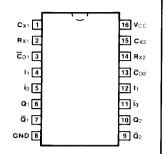
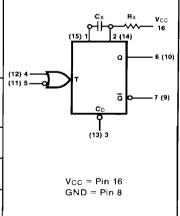
9602 8/5/97

DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

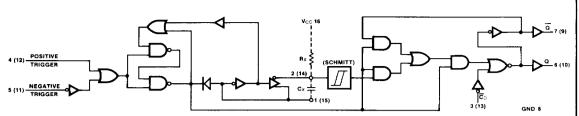

DESCRIPTION — The 9602 is a dual TTL monostable multivibrator with trigger mode selection, reset capability, rapid recovery, internally compensated reference levels and high speed capability. Output pulse duration and accuracy depend on external timing components, and are therefore under user control for each application. It is well suited for a broad variety of applications, including pulse delay generators, square wave generators, long delay timers, pulse absence detectors, frequency detectors, clock pulse generators and fixed-frequency dividers. Each input is provided with a clamp diode to limit undershoot and minimize ringing induced by fast fall times acting on system wiring impedances.

- RETRIGGERABLE, 0% TO 100% DUTY CYCLE
- DC LEVEL TRIGGERING, INSENSITIVE TO TRANSITION TIMES
- LEADING OR TRAILING-EDGE TRIGGERING
- COMPLEMENTARY OUTPUTS WITH ACTIVE PULL-UPS
- PULSE WIDTH COMPENSATION FOR △VCC AND △TA
- 50 ns TO ∞ OUTPUT PULSE WIDTH RANGE
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- RESETTABLE, FOR INTERRUPT OPERATIONS


ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS	оит	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to} +125^{\circ} \text{ C}$	TYPE	
Plastic DIP (P)	А	9602PC, 96L02PC		9B	
Ceramic DIP (D)	Α	9602DC, 96L02DC	9602DM, 96L02DM	6B	
Flatpak (F)	А	9602FC, 96L02FC	9602FM, 96L02FM	4L	

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

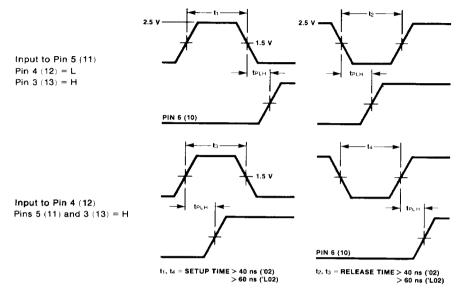
PIN NAMES	DESCRIPTION	96XX (U.L.) HIGH/LOW	96L (U.L.) HIGH/LOW	
lo	Trigger Input (Active Falling Edge)	1.5/1.0	0.5/0.25	
l ₁	Trigger Input (Active Rising Edge)	1.5/1.0	0.5/0.25	
\overline{C}_{D}	Direct Clear Input (Active LOW)	1.5/1.0	0.5/0.25	
Q	Positive Pulse Output	24/7.0	9.0/3.0	
	· ·	(6.2)		
Q	Complementary Pulse Output	24/7.0	9.0/3.0	
		(6.2)		

FUNCTIONAL BLOCK DIAGRAM

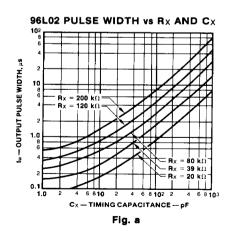
OPERATION NOTES

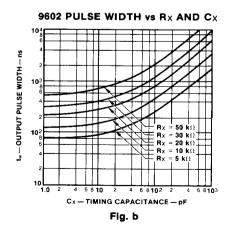
1. TRIGGERING—can be accomplished by a positive-going transition on pin 4 (12) or a negative-going transition on pin 5 (11). Triggering begins as a signal crosses the input V_{IL}:V_{IH} threshold region; this activates an internal latch whose unbalanced cross-coupling causes it to assume a preferred state. As the latch output goes LOW it disables the gates leading to the Q output and, through an inverter, turns on the capacitor discharge transistor. The inverted signal is also fed back to the latch input to change its state and effectively end the triggering action; thus the latch and its associated feed-back perform the function of a differentiator.

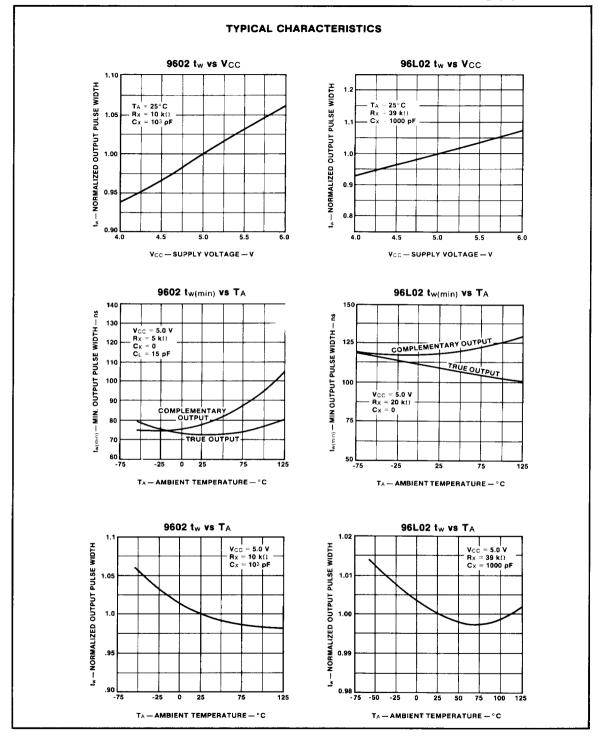
The emitters of the latch transistors return to ground through an enabling transistor which must be turned off between successive triggers in order for the latch to proceed through the proper sequence when triggering is desired. Pin 5 (11) must be HIGH in order to trigger at pin 4 (12); conversely, pin 4 (12) must be LOW in order to trigger at pin 5 (11).


- 2. RETRIGGERING In a normal cycle, triggering initiates a rapid discharge of the external timing capacitor, followed by a ramp voltage run-up at pin 2 (14). The delay will time out when the ramp voltage reaches the upper trigger point of a Schmitt circuit, causing the outputs to revert to the quiescent state. If another trigger occurs before the ramp voltage reaches the Schmitt threshold, the capacitor will be discharged and the ramp will start again without having disturbed the output. The delay period can therefore be extended for an arbitrary length of time by insuring that the interval between triggers is less than the delay time, as determined by the external capacitor and resistor.
- 3. NON-RETRIGGERABLE OPERATION—Retriggering can be inhibited logically, by connecting pin 6 (10) back to pin 4 (12) or by connecting pin 7 (9) back to pin 5 (11). Either hook-up has the effect of keeping the latch-enabling transistor turned on during the delay period, which prevents the input latch from cycling as discussed above in the section on triggering.
- 4. OUTPUT PULSE WIDTH An external resistor R_X and an external capacitor C_X are required, as shown in the functional block diagram. To minimize stray capacitance and noise pickup, R_X and C_X should be located as close as possible to the circuit. In applications which require remote trimming of the pulse width, as with a variable resistor, R_X should consist of a fixed resistor in series with the variable resistor; the fixed resistor should be located as close as possible to the circuit. The output pulse width t_w is defined as follows, where R_X is in kΩ, C_X is in pF and t_w is in ns.

 $\begin{array}{lll} (9602) & t_w = 0.31 \; R_X C_X \; (1+1/R_X) \; for \; C_X \geq 10^3 \; pF \\ & 5 \; k\Omega \leq R_X \leq 50 \; k\Omega \; for \; 0^\circ C \; to \; +75^\circ C \\ & 5 \; k\Omega \leq R_X \leq 25 \; k\Omega \; for \; -55^\circ C \; to \; +125^\circ C \\ (96L02) & t_w = 0.33 \; R_X C_X \; (1+3/R_X) \; for \; C_X \geq 10^3 \; pF \\ & 16 \; k\Omega \leq R_X \leq 220 \; k\Omega \; for \; 0^\circ C \; to \; +75^\circ C \\ & 20 \; k\Omega \leq R_X \leq 100 \; k\Omega \; for \; -55^\circ C \; to \; +125^\circ C \\ \end{array}$


Cx may vary from 0 to any value. For pulse widths with Cx less than 103 pF see Figures a and b.


OPERATION NOTES (Cont'd)


5. SETUP AND RELEASE TIMES—The setup times listed below are necessary to allow the latch-enabling transistor to turn off and the node voltages within the input latch to stabilize, thus insuring proper cycling of the latch when the next trigger occurs. The indicated release times (equivalent to trigger duration) allow time for the input latch to cycle and its signal to propagate.

- 6. RESET OPERATION A LOW signal on \overline{C}_D , pin 3 (13), will terminate an output pulse, causing Q to go LOW and \overline{Q} to go HIGH. As long as \overline{C}_D is held LOW, a delay period cannot be initiated nor will attempted triggering cause spikes at the outputs. A reset pulse duration, in the LOW state, of 25 ns is sufficient to insure resetting. If the reset input goes LOW at the same time that a trigger transition occurs, the reset will dominate and the outputs will not respond to the trigger. If the reset input goes HIGH coincident with a trigger transition, the circuit will respond to the trigger.
- CAPACITOR LEAKAGE For recommendations on electrolytic capacitors and larger values of Rx, please see the 9600 data sheet.

7-17

9602 • L02

SYMBOL	PARAMETER		96XX		UNITS	CONDITIONS
0502			Min	Max	011113	CONDITIONS
VoH	Output HIGH Voltage		12.4		V	V _{CC} = Min, I _{OH} = -9.6 m.
VoL Ou	Output LOW Voltage	хм		0.4	V	V _{CC} = 4.5 V, I _{OL} = 9.92 m V _{CC} = 5.5 V, I _{OL} = 12.8 m
	Output LOW Voltage	хс		0.45	V	$V_{CC} = 4.75 \text{ V}, I_{OL} = 11.3 \text{ m}$ $V_{CC} = 5.25 \text{ V}, I_{OL} = 12.8 \text{ m}$
ViH	Input HIGH Voltage	XM	2.0 1.9		V	Guaranteed Input HIGH Threshold
VIL	Input LOW Voltage			0.85	V	Guaranteed Input LOW Threshold
IIL	Input LOW Current			-1.6	mA	V _{CC} = Max, V _{IN} = V _{OL}
lıc	Input LOW Current	XM XC		-1.24 -1.14	mA	V _{CC} = Min, V _{IN} = V _{OL}
l _{IH}	Input HIGH Current			60	μА	V _{CC} = Max, V _{IN} = 4.5 V
los	Output Short XM Circuit Current XC			-25 -35	mA	V _{CC} = Max, V _{OUT} = 1.0 V
lcc	Power Supply Current	XM XC		45 52	mA	V _{CC} = 5.0 V
tpLH	Propagation Delay	XM		35 40	ns	$R_X = 5 k\Omega$, $C_X = 0$ $C_L = 15 pF$, Fig. c
t _{PHL}	Propagation Delay	XM		43 48	ns	$R_X = 5 k\Omega$, $C_X = 0$ $C_L = 15 pF$, Fig. c
t _w (min)	Minimum Output at Q Pulse Width at \overline{Q}	XM XC XM XC		90 100 100 110	ns	$R_X = 5 \text{ k}\Omega$, $C_X = 0$ $C_L = 15 \text{ pF}$, Fig. c
tw	Output Pulse Width		3.08	3.76	μS	$R_X = 10 \text{ k}\Omega$ $C_X = 1000 \text{ pF, Fig. c}$
CSTRAY	Maximum Stray Capacitance from Pin 2 (14) to Gnd			50	pF	
Rx	Timing Resistor Range	XM XC	5.0 5.0	25 50	kΩ	

Output HIGH Voltage Output LOW Voltage		Min	Max]		
 			IVIAA	UNITS	CONDITIONS	
Output LOW Voltage	Output HIGH Voltage			٧	V _{CC} = Min, I _{OH} = -0.36 m	
	Output LOW Voltage		0.3	V	V _{CC} = Min, I _{OL} = 4.8 mA	
Input HIGH Voltage		2.0		٧	Guaranteed Input HIGH Threshold	
Input LOW Voltage			0.7	٧	Guaranteed Input LOW Threshold	
Input HIGH Current			20 1.0	μA mA	V _{IN} = 2.4 V V _{IN} = 5.5 V V _{CC} = Max	
Input LOW Current			-0.4	mA	$V_{CC} = Max$, $V_{IN} = 0.3 V$	
Output Short Circuit Current		-2.0	-13	mA	V _{CC} = Max, V _{OUT} = 1.0 V	
Power Supply Current			16	mA	V _{CC} = Max	
Propagation Delay	XM XC		75 80	ns	$V_{CC} = 5.0 \text{ V}, R_X = 20 \text{ k}\Omega$ $C_X = 0, C_L = 15 \text{ pF}$ $T_A = 25^{\circ}\text{ C}$	
Propagation Delay	XM XC		62 65	ns	$V_{CC} = 5.0 \text{ V}, R_X = 20 \text{ k}\Omega$ $C_X = 0, C_L = 15 \text{ pF}$ $T_A = 25^{\circ}\text{ C}$	
Minimum Output Pulse Width at Q		11	0*	ns	$V_{CC} = 5.0 \text{ V}, \text{ Rx} = 20 \text{ k}\Omega$ $C_X = 0, C_L = 15 \text{ pF}$ $T_A = 25^{\circ}\text{ C}$	
Output Pulse Width		12.4	15.2	μS	$V_{CC} = 5.0 \text{ V}, R_X = 39 \text{ k}\Omega$ $C_X = 1000 \text{ pF}, T_A = 25^{\circ}\text{ C}$	
Change in Q Pulse Width Over Temperature	хс		1.6	%	$R_X = 39 \text{ k}\Omega, C_X = 1000 \text{ pl}$	
Timing Resistor Range	XM XC		100 220	kΩ		
v _o	100 ns	1.5 V		f	NPUT PULSE $\simeq 25 \text{ kHz}$ Amp $\simeq 3.0 \text{ V}$ Width $\simeq 100 \text{ ns}$ $_{\text{r}} = t_{\text{f}} \le 10 \text{ ns}$	
	Input LOW Current Output Short Circuit Curr Power Supply Current Propagation Delay To to Q Propagation Delay To to Q Minimum Output Pulse Wat Q Output Pulse Width Change in Q Pulse Width Over Temperature Timing Resistor Range	Input LOW Current Output Short Circuit Current Power Supply Current Propagation Delay XM XC Propagation Delay XM XC Minimum Output Pulse Width at Q Output Pulse Width Change in Q Pulse Width Over Temperature XM XC Timing Resistor Range XM XC	Input LOW Current Output Short Circuit Current Power Supply Current Propagation Delay XM XC Propagation Delay XM XC Minimum Output Pulse Width at Q Output Pulse Width 12.4 Change in Q Pulse Width XC Timing Resistor Range XM XC Timing Resistor Range XM XC	Input HIGH Current Input LOW Current Output Short Circuit Current Power Supply Current Propagation Delay Io to Q Propagation Delay XM To XC Propagation Delay XM To XC Animum Output Pulse Width at Q Output Pulse Width Over Temperature Timing Resistor Range XM To XC To XC	Input HIGH Current Input LOW Current Output Short Circuit Current Power Supply Current Propagation Delay To to Q Minimum Output Pulse Width at Q Output Pulse Width Over Temperature Timing Resistor Range Input LOW Current -0.4 mA mA Power Supply Current 16 mA Propagation Delay XM 75 80 ns 62 ns Minimum Output Pulse Width 110* ns Change in Q Pulse Width XC 1.6 % Timing Resistor Range XM 100 220 kΩ	