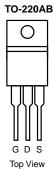
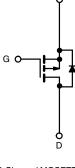


FQP11P06-VB Datasheet P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY		
V _{DS}	-60	V
R _{DS(on)} V _{GS} = 10 V	62	mΩ
$R_{DS(on)}$ $V_{GS} = 4.5$ V	74	mΩ
I _D	-40	А
Configuration	Sin	gle

FEATURES


- Trench Power MOSFET
- 100 % UIS Tested


APPLICATIONS

Load Switch

S

P-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current (T _J = 175 °C)	T _C = 25 °C	I_	-40		
	T _C = 100 °C	I _D	-30		
Pulsed Drain Current		I _{DM}	- 90	А	
Continuing Source Current (Diode Conduction)		۱ _S	- 30		
Avalanche Current		I _{AS}	- 28	1	
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	7.2	mJ	
Maximum Power Dissipation	T _C = 25 °C	Pn	60 ^a	w	
	T _A = 25 °C		2 ^b	vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
hunding to Ambient	$t \le 10 \text{ sec}$	R _{thJA}	20	25	
Junction-to-Ambient ^D	Steady State	' 'thJA	62	75	°C/W
Junction-to-Case		R _{thJC}	5	6	

Notes:

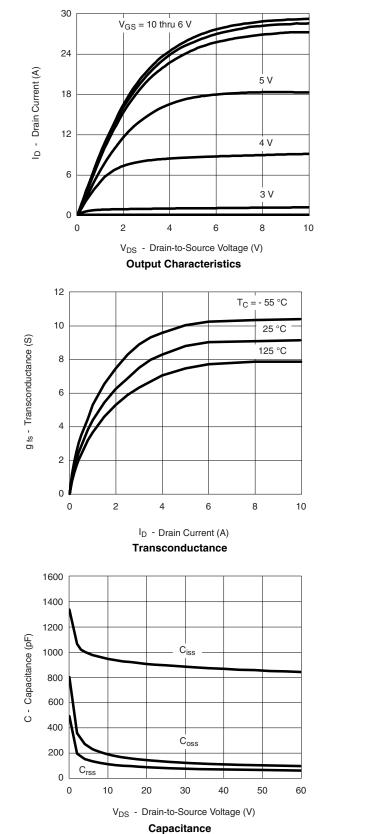
a. See SOA curve for voltage derating.

b. Surface Mounted on 1" x 1" FR-4 boad.

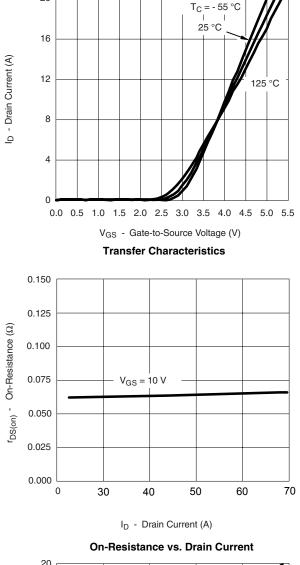
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SPECIFICATIONS $T_J = 25$	°C, unless	otherwise noted					
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Test Conditions	Min	Typ ^a	Max	Unit	
Gate Threshold Voltage VGS(m) VDS = VGS, b = -250 \muA -1.0 -3.0 V Gate-Body Leakage IGSS VDS = 0 V, VGS = 20 V ± 100 nA Zero Gate Voltage Drain Current IDSS $VDS = -60$ V, VGS = 0 V -1 μA VDS = -60 V, VGS = 0 V, TJ = 125 °C -550 μA On-State Drain Current ^b ID(on) VDS = -50, V, VGS = -10 V -10 A VGS = -10 V, Ig = -5 A 62 -10 A VGS = -10 V, Ig = -5 A, TJ = 125 °C 80 mΩ Drain-Source On-State Resistance ^b 9fs VDS = -5 V, VGS = 0 V, TJ = 125 °C 80 mΩ Tors(on) VGS = -10 V, Ig = -5 A, TJ = 125 °C 80 mΩ VQS = -10 V, Ig = -5 A, TJ = 125 °C 80 mΩ Porward Transconductance ^b 9fs VDS = -15 V, Ig = -5 A 62 Output Capacitance Ciss VDS = -25 V, VGS = 0 V, f = 1 MHz 1300 Output Capacitance Ciss VDS = -30 V, VGS = -10 V, Ig = -8.4 A 2.3 nC Gate-Drain Ch	Static		· · · ·			•		
$ \begin{array}{c c c c c c } \hline \mbox{Gate Threshold Voltage} & V_{GS}(h) & V_{DS} = V_{GS}, h_{D} = -250 \ \mu & -1.0 & -3.0 &$	Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = -250 \mu A$	- 60			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	- 1.0		- 3.0	v	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 100	nA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			- 1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = - 60 V, V_{GS} = 0 V, T_{J} = 125 °C			- 50	μA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V_{DS} = - 60 V, V_{GS} = 0 V, T_{J} = 175 °C			- 150		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On-State Drain Current ^b	I _{D(on)}	V _{DS} = - 5 V, V _{GS} = - 10 V	- 10			А	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} = - 10 V, I _D = - 5 A		62			
$ \begin{array}{ c c c c c c c } \hline V_{GS} = -10 \ V, \ I_D = -5 \ A, \ I_J = 175 \ C & 110 & 10 \\ \hline V_{GS} = -45 \ V, \ I_D = -2 \ A & 74 & 74 & 74 \\ \hline \hline V_{GS} = -45 \ V, \ I_D = -2 \ A & 74 & 74 & 74 & 74 & 74 & 74 & 74 & $		r	V_{GS} = - 10 V, I _D = - 5 A, T _J = 125 °C		80		mΩ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-Source On-State Resistance ^b	DS(on)	V_{GS} = - 10 V, I_D = - 5 A, T_J = 175 °C		110			
Dynamic 1300 pF Input Capacitance C_{iss} $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ 120 pF Reverse Transfer Capacitance C_{rss} 90 13 pF Total Gate Charge Q_g 90 13 pF Gate-Source Charge Q_{gd} $V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -8.4 \text{ A}$ 2.3 nC Gate-Source Charge Q_{gd} $V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -8.4 \text{ A}$ 2.3 nC Gate Point Charge Q_{gd} $V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -8.4 \text{ A}$ 2.3 nC Gate Resistance R_g $f = 1 \text{ MHz}$ 8.0 Ω Turn-On Delay Time ^C $t_d(on)$ $I_D = -30 \text{ V}, R_L = 3.57 \Omega$ 144 25 Turn-Off Delay Time ^C t_f $I_D = -8.4 \text{ A}, V_{GEN} = -10 \text{ V}, R_G = 2.5 \Omega$ 155 25 Source-Drain Diode Ratings and Characteristics $(T_C = 25 \text{ °C})^{b}$ -20 A Pulsed Current I_{SM} $I_F = -2 \text{ A}, V_{GS} = 0 \text{ V}$ -0.9 -1.3 V			V _{GS} = - 4.5 V, I _D = - 2 A		74			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^b	9 _{fs}	V _{DS} = - 15 V, I _D = - 5 A		8		S	
$ \begin{array}{c c c c c c c c c c c c c } \hline Output Capacitance & C_{OSS} & V_{DS} = -25 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 120 & pF \\ \hline P & P & P & P & P & P & P & P & P & P$	Dynamic	•	•		+	•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			1300			
$ \begin{array}{c c c c c c c c } \hline Total Gate Charge & Q_g \\ \hline Gate-Source Charge & Q_{gd} \\ \hline Gate-Drain Charge & Q_{gd} \\ \hline Gate Resistance & R_g & f = 1 \ MHz & 8.0 & \Omega \\ \hline Gate Resistance & R_g & f = 1 \ MHz & 8.0 & \Omega \\ \hline Turn-On \ Delay \ Time^C & t_{d(on)} \\ \hline Rise \ Time^C & t_{d(off)} \\ \hline Turn-Off \ Delay \ Time^C & t_{d(off)} \\ \hline Fall \ Time^C & t_f & \\ \hline \hline Source-Drain \ Diode \ Ratings \ and \ Characteristics & (T_C = 25 \ C)^b \\ \hline Pulsed \ Current & I_{SM} & \\ \hline Forward \ Voltage^b & V_{SD} & I_F = -2 \ A, \ V_{GS} = 0 \ V & -0.9 & -1.3 & V \\ \hline Reverse \ Recovery \ Time & t_{rr} & \\ \hline I_{LF} = -8 \ A, \ d/dt = 100 \ A/us & \\ \hline \hline Source \ Data Mark \ Source \ Source \ Source \ Source \ True \ Source \ Time \ True \ True \ C = -8 \ A, \ d/dt = 100 \ A/us & \\ \hline \hline \ Source \ Source \ Source \ Time \ Source \ True \ Source \ Time \ True \ C = -8 \ A, \ d/dt = 100 \ A/us & \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Output Capacitance	C _{oss}	V_{DS} = - 25 V, V_{GS} = 0 V, f = 1 MHz		120		pF	
$ \begin{array}{c c c c c c c c c c } \hline Gate-Source Charge & O_{gs} & V_{DS} = - 30 \ V, \ V_{GS} = - 10 \ V, \ I_D = - 8.4 \ A & 2.3 & 0 & 0 \\ \hline Gate-Drain Charge & O_{gd} & & & & & & & & & & & & & & & & & & &$	Reverse Transfer Capacitance	C _{rss}			90			
$ \begin{array}{c c c c c c c c } \hline Gate-Drain Charge & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total Gate Charge	Qg			13			
$ \begin{array}{c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ \text{MHz} & 8.0 & \Omega \\ \hline \mbox{Turn-On Delay Time}^{\rm C} & t_{d(on)} \\ \hline \mbox{Rise Time}^{\rm C} & t_r & V_{DD} = -30 \ \text{V}, \ \mbox{R}_L = 3.57 \ \Omega \\ \hline \mbox{Turn-Off Delay Time}^{\rm C} & t_d(off) \\ \hline \mbox{Turn-Off Delay Time}^{\rm C} & t_d(off) \\ \hline \mbox{Fall Time}^{\rm C} & t_f & D \\ \hline \mbox{Source-Drain Diode Ratings and Characteristics} & (T_C = 25\ \mbox{°C})^{\rm b} \\ \hline \mbox{Pulsed Current} & I_{SM} & C \\ \hline \mbox{Forward Voltage}^{\rm b} & V_{SD} & I_F = -2 \ \text{A}, \ \mbox{V}_{GS} = 0 \ \text{V} & -0.9 & -1.3 & \text{V} \\ \hline \mbox{Reverse Recovery Time} & t_{rr} & I_S \\ \hline \mbox{Is } = -8 \ \text{A}, \ \mbox{did}t = 100 \ \text{A} \ \text{Ms} \\ \hline All All All All All All All All All All$	Gate-Source Charge	Q _{gs}	V _{DS} = - 30 V, V _{GS} = - 10 V, I _D = - 8.4 A		2.3		nC	
$ \begin{array}{c c c c c c c c c } \hline Turn-On \ Delay \ Time^{c} & \hline t_{d(on)} \\ \hline Rise \ Time^{c} & \hline t_{r} & \\ \hline Turn-Off \ Delay \ Time^{c} & \hline t_{d(off)} \\ \hline Turn-Off \ Delay \ Time^{c} & \hline t_{d(off)} \\ \hline Fall \ Time^{c} & \hline t_{f} & \\ \hline \end{array} \\ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{gd}			3.2		1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	R _g	f = 1 MHz		8.0		Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time ^c	t _{d(on)}			5	10		
$\begin{tabular}{ c c c c c c c } \hline Turn-Off Delay Time^c & t_{d(off)} & t_{D} \cong - 8.4 \ A, \ V_{GEN} = -10 \ V, \ H_G = 2.5 \ \Omega & 15 & 25 & 7 & 12 & 15 & 15 & 15 & 15 & 15 & 15 & 15$	Rise Time ^c	t _r	V_{DD} = - 30 V, R_L = 3.57 Ω		14	25		
Source-Drain Diode Ratings and Characteristics $(T_C = 25 \ ^{\circ}C)^b$ Pulsed CurrentISM- 20AForward Voltage ^b V _{SD} I _F = - 2 A, V _{GS} = 0 V- 0.9- 1.3VReverse Recovery Time t_{rr} I _F = - 8 A, di/dt = 100 A/us5080ns	Turn-Off Delay Time ^c	t _{d(off)}	$\text{I}_\text{D}\cong$ - 8.4 A, V_GEN = - 10 V, R_G = 2.5 Ω		15	25	115	
Pulsed CurrentI SMI Forward Voltageb- 20AForward VoltagebV SDI F F F FI F<	Fall Time ^c	t _f]		7	12		
Forward Voltage ^b V_{SD} $I_F = -2 \text{ A}, V_{GS} = 0 \text{ V}$ -0.9 -1.3 V Reverse Recovery Time t_{rr} $I_F = -8 \text{ A}, di/dt = 100 \text{ A/us}$ 5080ns	Source-Drain Diode Ratings and Cha	aracteristics	(T _C = 25 °C) ^b			•		
Reverse Recovery Time t_{rr} $I_{rr} = -8 \text{ A. } di/dt = 100 \text{ A/us}$ 5080ns	Pulsed Current	I _{SM}			- 20		А	
r = -8 A. dl/dt = 100 A/us	Forward Voltage ^b	V _{SD}	$I_{\rm F} = -2$ A, $V_{\rm GS} = 0$ V		- 0.9	- 1.3	V	
Reverse Recovery Time Q _{rr} 80 120 nC	Reverse Recovery Time	t _{rr}	$l_{-} = -8.4$ di/dt = 100.4/us		50	80	ns	
	Reverse Recovery Time	Q _{rr}	$r_{\rm F} = -0.7$, $u/u_{\rm C} = 100.7/\mu_{\rm S}$		80	120	nC	

Notes:

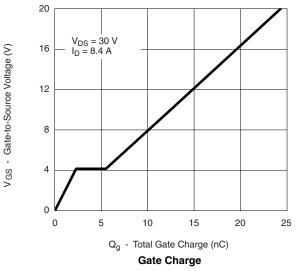
a. Guaranteed by design, not subject to production testing.


b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

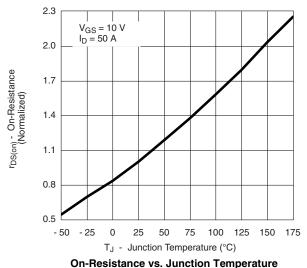
c. Independent of operating temperature.

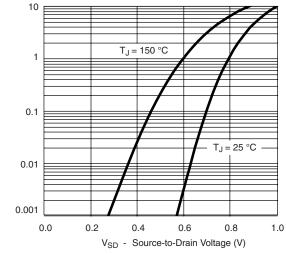

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

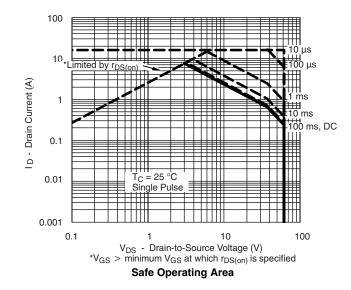
VBsemi Bsemi.com

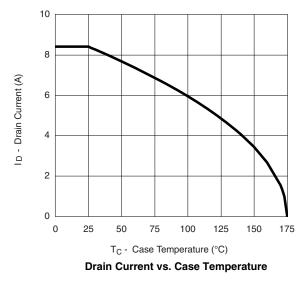


TYPICAL CHARACTERISTICS 25 °C unless noted



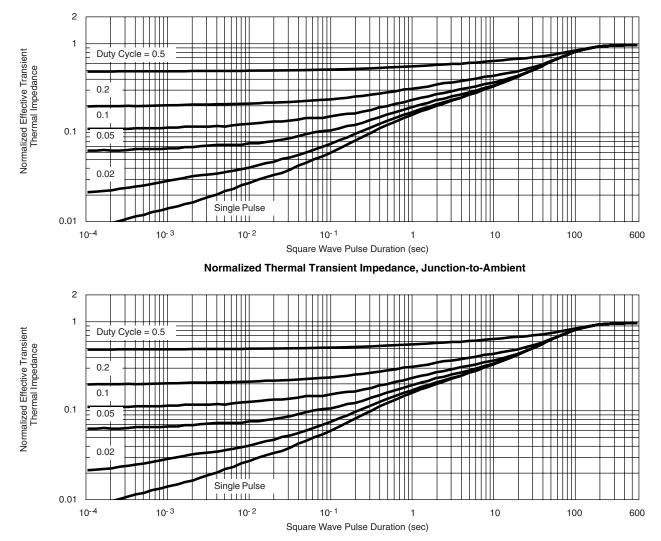

20


TYPICAL CHARACTERISTICS 25 °C unless noted

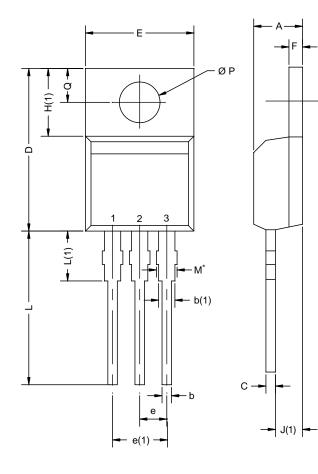


IS - Source Current (A)

Source-Drain Diode Forward Voltage



THERMAL RATINGS



THERMAL RATINGS

Normalized Thermal Transient Impedance, Junction-to-Case

TO-220AB

	MILLIN	IETERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.25	4.65	0.167	0.183	
b	0.69	1.01	0.027	0.040	
b(1)	1.20	1.73	0.047	0.068	
С	0.36	0.61	0.014	0.024	
D	14.85	15.49	0.585	0.610	
Е	10.04	10.51	0.395	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.09	6.48	0.240	0.255	
J(1)	2.41	2.92	0.095	0.115	
L	13.35	14.02	0.526	0.552	
L(1)	3.32	3.82	0.131	0.150	
ØΡ	3.54	3.94	0.139	0.155	
Q	2.60	3.00	0.102	0.118	

Notes

 * M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.