
Thyristors

Q6012xH1LED Series

Description

Q6012xH1LED series is designed to meet low load current characteristics typical in LED lighting applications.

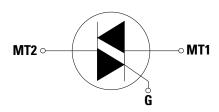
By keeping holding current at 8mA maximum, this Triac series is characterized and specified to perform best with LED loads. The Q6012xH1LED series is best suited for LED dimming controls to obtain the lowest levels of light output with a minimum probability of flickering.

Agency Approval

Agency	Agency File Number
71	E71639*

* - L Package only

Main Features


Symbol	Value	Unit
I _{T(RMS)}	12	А
V _{DRM} /V _{RRM}	600	V
I _{GT}	10	mA

Features

- RoHS-compliant
- As low as 8mA max holding current
- L-Package is UL Recognized for 2500Vrms
- 110°C rated junction temperature
- di/dt performance of 70A/µs
- QUADRAC version includes intergrated DIAC
- Provides full control of light out put at the extreme low end of load conditions.

- 2500V AC min isolation between mounting tab and active terminals
- Improves margin of safe operation with less heat sinking required
- Enable survivability of typically LED load operating characteristics
- Simplicity of circuit design & layout
- UL 1557 as an Electrically Isolated Semiconductor Device

Schematic Symbol

Additional Information

Resources

Samples

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, lighting controls with LED lamp loads, small low current motor in power tools, lower current motor in home/brown goods appliances.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Thyristors

12 Amp Alternistor (High Commutation) Triac for LED dimmer Application

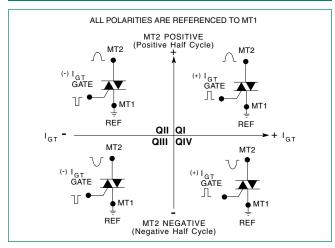
Absolute Maximum Ratings

Symbol	Paramete	Value	Unit		
	RMS on-state current (full sine wave)	Q6012LH1LED	T _c = 90°C	12	А
I _{T(RMS)}		Q6012RH1LED Q6012NH1LED			
	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	110	٨
TSM	(full cycle, T _J initial = 25°C)	f = 60 Hz	t = 16.7 ms	120	A
l²t	I²t Value for fusing	-	t _p = 8.3 ms	60	A ² s
di/dt	Critical rate of rise of on-state current	f = 120 Hz	T _J = 110°C	70	A/µs
I _{GTM}	Peak gate trigger current	$t_p \le 10 \ \mu s;$ $I_{GT} \le I_{GTM}$	T _J = 110°C	2.0	А
P _{G(AV)}	Average gate power dissipation	-	T _J = 110°C	0.5	W
T _{stg}	Storage temperature range -			-40 to 150	°C
T,	Operating junction temperature range			-40 to 110	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Quadr	ant	Value	Unit
l _{GT}	V - 12V P - 60 O	1 – 11 – 111	MAX.	10	mA
V_{GT}	$V_{_{\rm D}}$ = 12V R _L = 60 Ω	1 – 11 – 111	MAX.	1.3	V
$V_{\rm GD}$	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 110^{\circ}\text{C}$	1 – 11 – 111	MIN.	0.2	V
I _H	I _T = 20mA		MAX.	8	mA
dv/dt	$V_{_{\rm D}} = V_{_{\rm DRM}}$ Gate Open $T_{_{\rm J}} = 110^{\circ}{\rm C}$		MIN.	45	V/µs
(dv/dt)c	$(di/dt)c = 6.5 \text{ A/ms T}_J = 110^{\circ}\text{C}$		MIN.	2	V/µs
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15 μ s $I_{T} = 17.0 A$	A(pk)	TYP.	4	μs

Static Characteristics


Symbol	Test Conditions			Value	Unit
V _{TM}	$I_{TM} = 17.0A t_p = 380 \mu s$	-	MAX.	1.60	V
I _{DRM}	V - V /V	$T_J = 25^{\circ}C$	NAAV	10	μА
IRRM	$V_{D} = V_{DRM} / V_{RRM}$	T _J = 110°C	MAX.	1	mA

Thermal Resistances

Symbol	Parameter		Value	Unit
		Q6012LH1LED	2.3	
$R_{\Theta(J-C)}$	Junction to case (AC)	Q6012RH1LED	1.2	°C/W
		Q6012NH1LED	1.2	

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

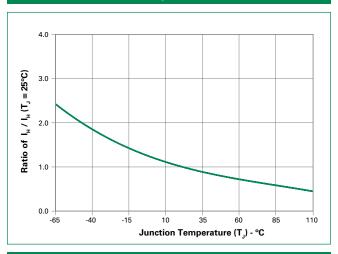


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

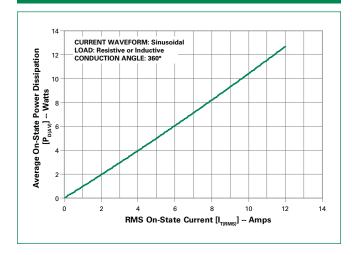


Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

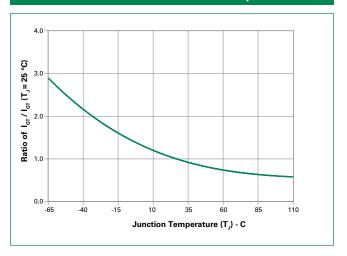


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

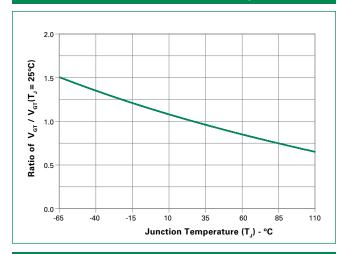
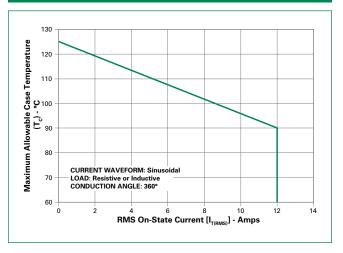



Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Figure 7: On-State Current vs. On-State Voltage (Typical)

Thyristors

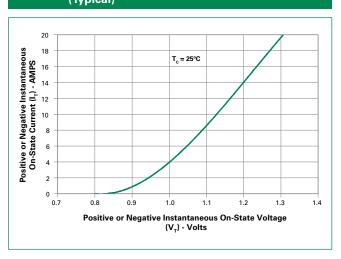
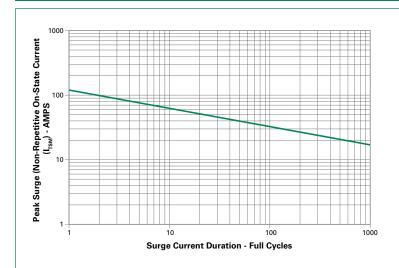
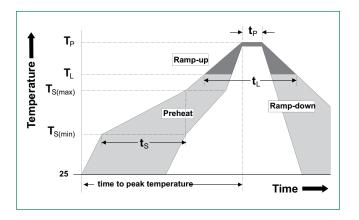



Figure 8: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive

RMS On-State Current [I $_{\text{T(RMS)}}$: Maximum] Rated Value at Specific Case Temperature

Notes:


- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

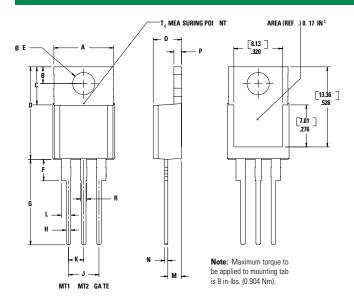
Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ran	np up rate (Liquidus Temp) (T_L) to peak	5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 – 150 seconds	
Peak Tempe	rature (T _p)	260 ^{+0/-5} °C	
Time within	5°C of actual peak Temperature (t _p)	20 - 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes Max.	
Do not exceed		280°C	

Thyristors

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Terminal Material	Copper Alloy

Design Considerations


Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

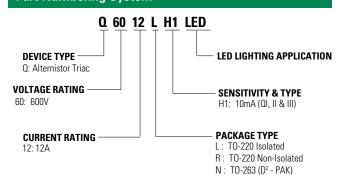
Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Thyristors

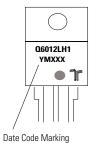
Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
Α	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
M	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
P	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22


Product Selector

Part Number	Gate Sensitivity Quadrants I – II – III	Туре	Package
Q6012LH1LED			TO-220L
Q6012RH1LED	10mA	Alternistor Triac	TO-220R
Q6012NH1LED			TO-263 D ² - PAK

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
Q6012LH1LEDTP	Q6012LH1	2.2 g	Tube Pack	1000 (50 per tube)
Q6012RH1LEDTP	Q6012RH1	2.2 g	Tube Pack	1000 (50 per tube)
Q6012NH1LEDTP	Q6012NH1	1.6 g	Tube Pack	1000 (50 per tube)
Q6012NH1LEDRP	Q6012NH1	1.6 g	Embossed Carrier	500

Part Numbering System

Part Marking System

TO-220 AB - (L & R Package) TO-263 AB - (N Package)

Y:Year Code
M: Month Code
XXX: Lot Trace Code

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimier-electronics.