Switching Transistor

PNP Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

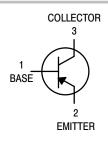
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V_{CEO}	-40	Vdc
Collector - Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ic	-600	mAdc
Collector Current – Peak	I _{CM}	-900	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) @T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) @T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


*Transient pulses must not cause the junction temperature to be exceeded.

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

www.onsemi.com

SOT-23 (TO-236) CASE 318 STYLE 6

MARKING DIAGRAM

2T = Specific Device Code*

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Specific Device Code, Date Code or overbar orientation and/or location may vary depending upon manufacturing location. This is a representation only and actual devices may not match this drawing exactly.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT4403LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
SMMBT4403LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
MMBT4403LT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

(Symbol	Min	Max	Unit		
OFF CHARACTERISTICS	OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 3) (I _C = -1.0 mAdc, I _B = 0)			-40	_	Vdc	
Collector - Base Breakdown Voltage	$(I_C = -0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	-40	-	Vdc	
Emitter-Base Breakdown Voltage	$(I_E = -0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	-5.0	-	Vdc	
Base Cutoff Current	$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$	I _{BEV}	_	-0.1	μAdc	
Collector Cutoff Current	$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$	I _{CEX}	_	-0.1	μAdc	
ON CHARACTERISTICS			•		•	
DC Current Gain (Note 3) (Note 3)	$ \begin{array}{l} (I_{C} = -0.1 \text{ mAdc}, V_{CE} = -1.0 \text{Vdc}) \\ (I_{C} = -1.0 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}) \\ (I_{C} = -10 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}) \\ (I_{C} = -150 \text{mAdc}, V_{CE} = -2.0 \text{Vdc}) \\ (I_{C} = -500 \text{mAdc}, V_{CE} = -2.0 \text{Vdc}) \end{array} $	h _{FE}	30 60 100 100 20	- - - 300 -	-	
Collector – Emitter Saturation Voltage	(Note 3) $ \begin{aligned} (I_C = -150 \text{ mAdc}, I_B = -15 \text{ mAdc}) \\ (I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc}) \end{aligned} $	V _{CE(sat)}	- -	-0.4 -0.75	Vdc	
Base-Emitter Saturation Voltage (Not	e 3) $ \begin{aligned} \text{(I}_{\text{C}} &= -150 \text{ mAdc, I}_{\text{B}} = -15 \text{ mAdc)} \\ \text{(I}_{\text{C}} &= -500 \text{ mAdc, I}_{\text{B}} = -50 \text{ mAdc)} \end{aligned} $	V _{BE(sat)}	-0.75 -	-0.95 -1.3	Vdc	
SMALL-SIGNAL CHARACTERISTIC	s					
Current-Gain - Bandwidth Product	$(I_C = -20 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	200	_	MHz	
Collector-Base Capacitance	$(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	_	8.5	pF	
Emitter-Base Capacitance	$(V_{BE} = -0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{eb}	_	30	pF	
Input Impedance	$(I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{ie}	1.5	15	kΩ	
Voltage Feedback Ratio	Voltage Feedback Ratio $(I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$		0.1	8.0	X 10 ⁻⁴	
Small – Signal Current Gain	Small – Signal Current Gain $(I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$		60	500	-	
Output Admittance ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	1.0	100	μMhos	
SWITCHING CHARACTERISTICS						
Delay Time	$(V_{CC} = -30 \text{ Vdc}, V_{EB} = -2.0 \text{ Vdc},$	t _d	_	15		
Rise Time	$I_C = -150 \text{ mAdc}, I_{B1} = -15 \text{ mAdc})$	t _r	_	20	ns	
Storage Time	$(V_{CC} = -30 \text{ Vdc}, I_C = -150 \text{ mAdc},$	t _s	_	225	ns	
Fall Time	$I_{B1} = I_{B2} = -15 \text{ mAdc}$	t _f	_	30	1115	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

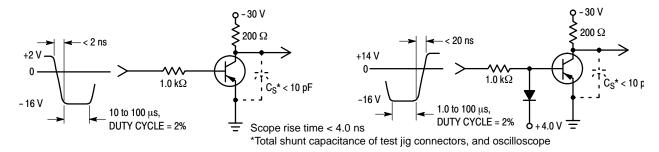
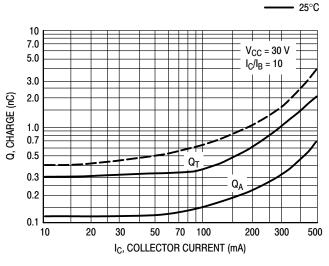
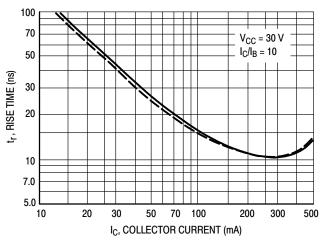



Figure 1. Turn-On Time

Figure 2. Turn-Off Time


TRANSIENT CHARACTERISTICS

— 100°C 100 $I_{\rm C}/I_{\rm B} = 10$ 70 50 @ V_{CC} = 30 V @ $V_{CC} = 10 V$ 30 t, TIME (ns) $t_d @ V_{BE(off)} = 2 V$ 20 $t_d @ V_{BE(off)} = 0$ 10 7.0 10 20 70 200 300 500 I_C, COLLECTOR CURRENT (mA)

Figure 3. Charge Data

Figure 4. Turn-On Time

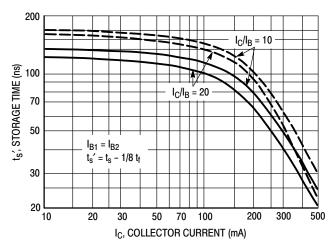
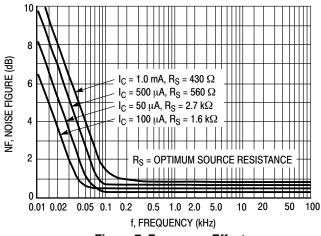



Figure 5. Rise Time

Figure 6. Storage Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 $V_{CE} = -10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$; Bandwidth = 1.0 Hz

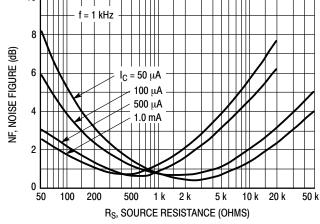


Figure 7. Frequency Effects

Figure 8. Source Resistance Effects

h PARAMETERS

$$V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$$

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were selected from the MMBT4403LT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

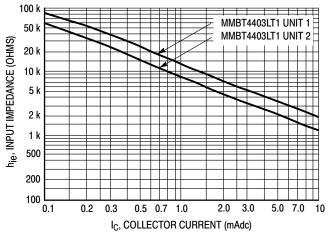


Figure 9. Input Impedance

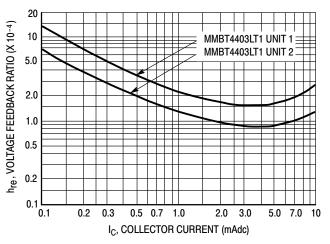


Figure 10. Voltage Feedback Ratio

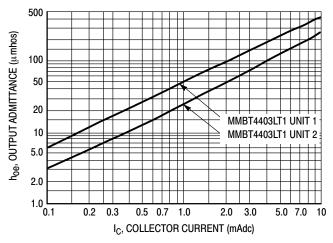


Figure 11. Output Admittance

STATIC CHARACTERISTICS

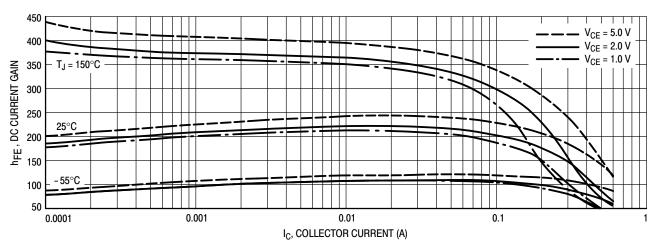


Figure 12. DC Current Gain

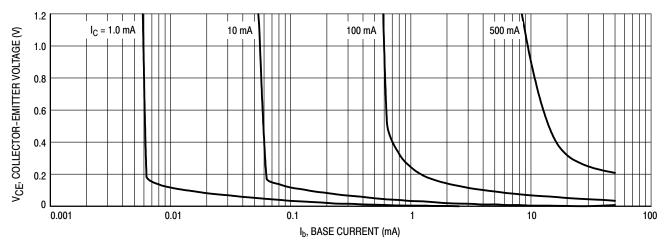


Figure 13. Collector Saturation Region

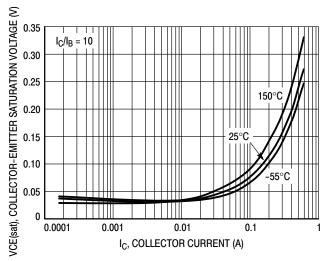


Figure 14. Collector–Emitter Saturation Voltage vs. Collector Current

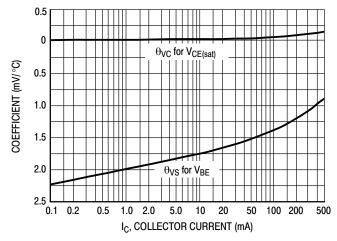


Figure 15. Temperature Coefficients

STATIC CHARACTERISTICS

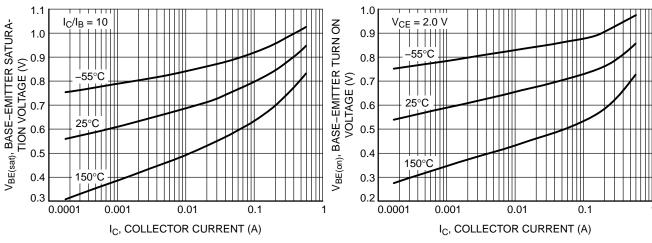


Figure 16. Base-Emitter Saturation Voltage vs. **Collector Current**

Figure 17. Base-Emitter Turn On Voltage vs. **Collector Current**

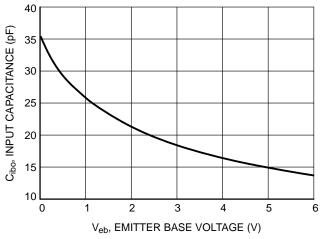


Figure 18. Input Capacitance vs. Emitter Base Voltage

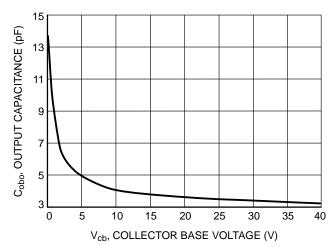


Figure 19. Output Capacitance vs. Collector Base Voltage

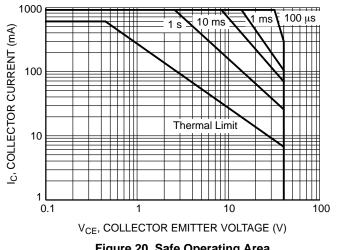


Figure 20. Safe Operating Area

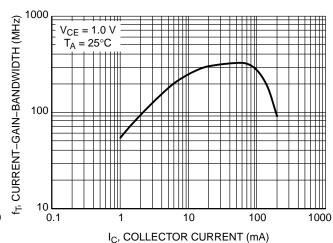


Figure 21. Current-Gain-Bandwidth Product

MILLIMETERS

MIN

0.89

0.01

0.37

0.08

2.80

1.20

1.78

0.30

0.35

2.10

O°

NOM

1.00

0.06

0.44

0.14

2.90

1.30

1.90

0.43

0.54

2.40

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318 ISSUE AU**

DATE 14 AUG 2024

MAX

1.11

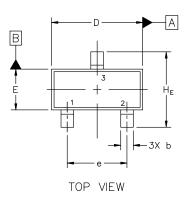
0.10

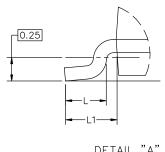
0.50

0.20

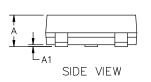
3.04

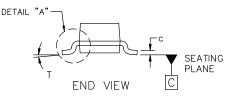
1.40

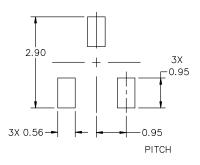

2.04


0.55

0.69


2.64


10°



DETAIL "A" Scale 3:1

NOTES:

DIM

Α

Α1

b

С

D

Ε

е L

L1

HE

Τ

- DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS:
- MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE
- BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Doc Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.3	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P CASE 318 ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR			
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	2. CATHODE 2.	2: STYLE 13: CATHODE PIN 1. SOURCE CATHODE 2. DRAIN ANODE 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	2. ANODE 2.	3: STYLE 19: NO CONNECTION PIN 1. CATHODE CATHODE 2. ANODE ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT			STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE			

DOCUMENT NUMBER:	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales