
Type MRS Series

Key Features

- Suitable for tight spaces
- High precision thin film
- **■** Wide value range
- Lower placement costs
- Range of stabilities
- Low cost in volume
- High reliability design
- RoHS compliant component compatible with lead (Pb) free soldering techniques

Applications

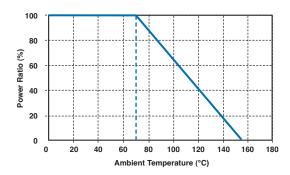
- **Voltage divider**
- Feedback circuits
- Signal conditioning

The MRS series is an entirely new chip network utilising nickel chrome sputtering on high purity alumina. This network has been designed for high volume applications and is offered with 4 isolated resistors on a single substrate (4 x 0603 resistors) at 0.1% with convex terminals. A wide value range and alternative TCRs (Temperature Coefficient of Resistance) make this a most versatile resistor solution.

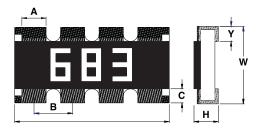
Characteristics - Electrical

Rated Power at 70°C:	0.0625W						
Resistance Range Ω Min:	10	00	100				
Resistance Range Ω Max:	21	K0	33K				
Resistance Tolerance:	±0.1%, ±0.5%, ±1%						
Temperature Coefficient of Resistance (ppm/°C):	±10 ±15		±25	±50			
Selection Series:	E24						
Maximum Operating Voltage:	50V						
Maximum Overload Voltage:	100V						
Operating Temperature Range:		-55 to	+155°C				

Operating Voltage= $\sqrt{(P^*R)}$ or max. operating voltage listed above, whichever is lower Overload Voltage= $2.5^*\sqrt{(P^*R)}$ or max. overload voltage listed above, whichever is lower

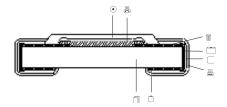

Characteristics - Environmental

Item	Requir	ement	Test Method
	Tol. ≤ 0.25%	Tol. > 0.25%	-
Temperature Coefficient of Resistance (T.C.R.):	As spe	ecified	MIL-STD-202F Method 304 +25/-55/+25/+125/+25°C
Short Time Overload:	ΔR±0.25%	ΔR±0.5%	JIS-C-5201-1 5.5 RCWV*2.5 or max. overload voltage for 5 seconds
Insulation Resistance:	1000	ΩΜΩ	MIL-STD-202F Method 302 Apply 100VDC for 1 minute
Endurance:	ΔR±0.25%	ΔR±0.5%	MIL-STD-202F Method 108A 70±2°C, max. working voltage for 1000hrs with 1.5hrs "ON" and 0.5 hrs "OFF"
Damp Heat with Load:	ΔR±0.25%	ΔR±0.5%	MIL-STD-202F Method 103B 40±2°C, 90~95% R.H. max. working voltage for 1000hrs with 1.5hrs "ON" and 0.5 hrs "OFF"
Bending Strength:	ΔR±0.25%	ΔR±0.5%	JIS-C-5201-1 6.1.4 Bending amplitude 3mm for 10 seconds
Solderability:	95% min.	coverage	MIL-STD-202F Method 208H 245±5°C for 3 seconds
Resistance to Soldering Heat:	ΔR±0.25%	ΔR±0.5%	MIL-STD-202F Method 210E 260±5°C for 10 seconds
Dielectric Withstand Voltage:	100V		MIL-STD-202F Method 301 max. overload voltage for 1 minute
Thermal Shock:	ΔR±0.25%	ΔR±0.5%	MIL-STD-202F Method 107G -55°C ~150°C, 100 cycles
Low Temperature Operation:	ΔR±0.25%	ΔR±0.5%	JIS-C-5201-1 7.1 1 hour, -65°C, followed by 45 minutes of RCWV

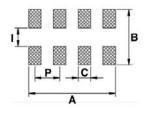


Type MRS Series

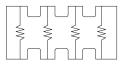
Derating Curve



Dimensions

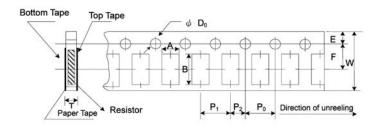

Туре	No. of		Dimension						
	Resistors	L	W	Н	Α	В	С	Υ	(g) (1000 pcs)
MRS	4	3.20 ±0.15	1.60 ±0.15	0.55 ±0.10	0.50 ±0.15	0.80 ±0.05	0.30 ±0.15	0.30 ±0.15	8.22

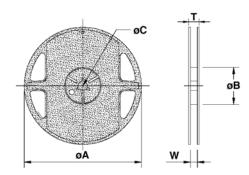
Construction


Ī	Alumina Substrate		Barrier Layer (Ni)
	Bottom Electrode (Ag)	H	External Electrode (Sn)
	Top Electrode (Ag-Pd)	1	Resistor Layer (NiCr)
	Edge Electrode (Ag)	•	Overcoat (Epoxy)

Recommend Land Pattern

Туре	Α	В	С	I	Р
MRS	2.85	3.10	0.45	0.80	0.80

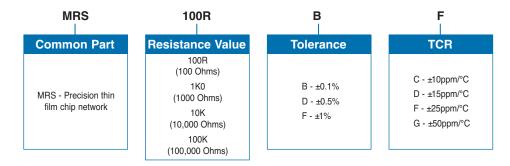

Circuit Diagram


Type MRS Series

Paper Tape Specification

Туре	Α	В	W	E	F	P₀	P ₁	P ₂	øD₀	Т
MRS	1.95 ±0.1	3.50 ±0.1	8.0 ±0.2	1.75 ±0.1	3.5 ±0.05	4.0 ±0.1	4.0 ±0.05	2.0 ±0.05	1.5 +0.1/-0	0.85 ±0.1

Packaging



Туре	Packaging-Quantity	Tape Width	Reel Diameter	øΑ	øΒ	øC	W	Т
MRS	Paper-5K	8mm	7 inch	178.5 ±1.5	60 +1/-0	13.0 ±0.2	9.0 ±0.5	12.5 ±0.5

Marking

Туре	100R	2K2	0K	22K	33K
MRS	1000	2201	1002	2202	3302

How to Order

TE Connectivity, TE connectivity (logo) and TE (logo) are trademarks.

Other logos, product and Company names mentioned herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity: